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Abstract—The dedicated memory of hardware accelerators can
be insufficient to store all weights and/or intermediate states
of large deep learning models. Although model parallelism is a
viable approach to reduce the memory pressure issue, significant
modification of the source code and considerations for algorithms
are required. An alternative solution is to use out-of-core methods
instead of, or in addition to, data parallelism.

We propose a performance model based on the concurrency
analysis of out-of-core training behavior, and derive a strategy
that combines layer swapping and redundant recomputing. We
achieve an average of 1.52x speedup in six different models
over the state-of-the-art out-of-core methods. We also introduce
the first method to solve the challenging problem of out-of-core
multi-node training by carefully pipelining gradient exchanges
and performing the parameter updates on the host. Our data
parallel out-of-core solution can outperform complex hybrid
model parallelism in training large models, e.g. Megatron-LM
and Turning-NLG.

Index Terms—Deep Neural Networks, Out-of-core, GPUs

I. INTRODUCTION

Training Deep Neural Networks (DNNs) is increasingly
becoming one of the main HPC workloads. As model and
dataset sizes for Deep Learning (DL) become increasingly
large, the memory requirement for training Neural Networks
(NNs) increases dramatically. Even though the latest genera-
tion of Nvidia GPUs have up to 32 GiB (V100), this capacity
remains a major bottleneck in a lot of the cases [1]. For
example, with a large network such as ResNet-200 [2], the
local batch-size for training cannot be larger than six ImageNet
samples, and in ResNet-1001 the local batch size drops down
to two samples. This problem is also a challenge for models
that require tens of billions of parameters [3], [4], at which
the model will not fit into a single GPU and programmers are
forced to employ complex model partitioning methods [1].

Distributed training can be used if multiple GPUs are avail-
able. Data parallelism is a commonly used scheme in which
the model is replicated and the training data is distributed.
However, this scheme does not reduce memory pressure from
model parameters and activations, forcing users to resort to
partitioning a model on several devices (model parallelism).
For instance, the Megatron-LM model [3] has 8.3 billion
parameters which need at least 16 GPUs to fit, assuming
16 GiB memory per GPU. In addition, even if a given model is

relatively small, there are cases where even a single training
sample is too large to be processed on a single GPU. Such
cases include high resolution medical or satellite images which
can go up to 2 GiB per sample [5]. In comparison, the widely
used ImageNet dataset [6] has images that are smaller than
100 KiB per sample (re-sized to 224× 224).

Although model parallelism could be a solution, construc-
tion of a cost model and significant modification of the code
is needed for every model/dataset/system combination [1],
[7], [8]. Another general solution to this memory capacity
problem, that we discuss in this paper, is to use out-of-core
methods, without or with redundant recompute, to break the
GPU memory limitation [9]–[14].

The first challenge that KARMA must address is how to first
derive an efficient out-of-core strategy that reduces the stall
in the execution pipeline, i.e. address the device occupancy
bottleneck. Prefetching and data swapping in general, is a
well-researched area. That being said, general prefetching and
swapping techniques are not efficient for out-of-core DL since
they don’t provide a comprehensive considerations of the con-
currency requirements and occupancy w.r.t. DL workloads [9],
[10]. The main challenge in deriving an efficient prefetching
and swapping strategy is to build a robust model for projecting
the minimum required concurrency to keep device utilization
as close as possible to maximum. This requires taking into
consideration specific features and requirements in DL train-
ing: reuse of intermediate results from the forward phase in
the backward phase, orchestrating complex pipelines in case
of distributed training, non-linear dependency between layers,
and memory footprint to compute imbalance (i.e. compute is
not linearly correlated to the memory footprint). We propose
a performance model to derive a capacity-based out-of-core
strategy by the means of assuring a minimum concurrency,
i.e., available parallelism, that keeps the device at the highest
possible utilization. In addition, we identify and utilize any
opportunities at which redundantly recomputing layers reduces
the stalls in the pretefching pipeline. More specifically, we
generate a schedule to interleave the layers designated for
swapping with the recompute of layers that are not swapped.

The second challenge that KARMA must address is how
to enable multi-GPU training; none of the existing out-of-
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core methods support multi-GPU, since the layers are split
between the GPU and CPU, and hence the weight update
becomes complicated. To overcome that, we use a pipeline
of overlapped gradient exchanges, by groups of layers, and
orchestrate the update of the weights to be executed on the
CPU, in a heterogeneous fashion, before swapping the layers
in and out of the device for the following iteration.

In summary, our paper contributes the following:
• We propose a performance model based on occupancy

analysis to estimate the training time of out-of-core methods.
• Based on our performance mode, we propose KARMA, an

out-of-core method for training DNNs with the PyTorch
framework [15]. KARMA includes a novel approach for
interleaving capacity-based layer swapping with redundant
recompute to assure peak device occupancy with minimum
stalls in the training pipeline. Using KARMA, we achieve
an average of 1.52x speedup over the state-of-the-art out-of-
core and recompute methods.

• We further extend the capability of KARMA to support
data parallelism in multi-GPU training, i.e. the first out-of-
core method to support multi-GPUs, by orchestrating weight
updates of swapped-out layers to happen on the CPU side.

• We demonstrate how data parallel KARMA outperforms
the model plus data parallel approaches in training models
with billions of parameters, e.g. Megatron-LM [3] (8.3B
parameters) and Turing-NLG [4] (17B parameters) trained
on 2, 048 GPUs. Finally, we demonstrate cases at which data
parallel KARMA is the more cost effective methodology
when scaling the mini-batch size above the memory limit.

II. BACKGROUND AND RELATED WORK

Deep neural networks are made up of a network of neurons
(nodes) that are organized in layers to form a model. A DNN is
trained iteratively by updating the weights of connections be-
tween nodes in order to reduce the prediction error of labeled
datasets. A DNN is trained on a dataset of samples to calculate
the model weights for which the loss function is minimized.
DNNs are trained in two stages. First, during the forward
phase, the samples pass through the entire network. Next,
in the subsequent backward phase (back propagation), the
gradients are computed and weights are updated. Commonly,
the samples are randomly chosen from the dataset in batches
(known as mini-batch). The training process is performed
on the batches of samples, in an iterative fashion, by using
an optimization algorithm such as the Stochastic Gradient
Descent (SGD). Training with the entire set of training samples
is typically repeated, in what is called epochs, until the model
convergences to a desired accuracy.

A. Related Work

Speeding up DNNs is extensively researched, but few works
address the memory barrier in distributed training. We do
not consider comparisons to basic virtual memory methods
(i.e. CUDA Unified Memory) since several works report they
perform less favorably than dedicated methods [9], [10].

1) Out-of-core (Virtualization): vDNN++ [10] acts as a
runtime memory manager that virtualizes the memory usage of
DNNs in order to enable simultaneous training of DNNs with
both GPU and CPU memories when the DNN cannot fit into
GPU memory. Synchronization of the computation and swap-
in/out of data at the end of each layer can cause inefficiencies
to some extent in vDNN++. The library ooc cuDNN [11] is
an extension of Nvidia’s DNN library(cuDNN). It uses an out-
of-core approach to apply cuDNN-compatible operators even
when a layer exceeds GPU memory capacity. In ooc cuDNN,
the feature map of a single layer can be divided over any of
the three dimensions: batch, channels, and filters. This means
that the swapping of tensors in ooc cuDNN is limited to the
scope of a single layer, i.e., no prefetching is applied.

2) Gradient Checkpointing (Recompute): Gradient
checkpointing [16], [19], [20] is a method that enables fit-
ting larger models into memory by redundantly recomputing
activations from checkpoints in the back propagation (at the
cost of increased compute time).

Since gradient checkpointing, by definition, trades perfor-
mance for memory capacity, it could not be used to improve
performance in distributed training (unlike out-of-core, as will
be shown later). In addition, gradient checkpointing has a
lower bound on the memory consumption for a model of
N layers of O(

√
N) (or O(log2N) under a special recursive

scheme, so may not be used commonly [16]). Hence, it might
enable training larger models, yet is still bounded by a memory
requirement, unlike out-of-core solutions that in theory have
no bounds.

3) Out-of-core Plus Recompute:, SuperNeurons, Ca-
puchin, and PoocH: SuperNeurons [12] uses a simple method
to combine swapping and recomputing based on the target
layer, e.g. activations of convolution layers are swapped out
while batch normalization layers are recomputed. However,
this does not take the actual execution time and memory
usage during training into account. PoocH [13] extends a
DL framework to enable out-of-core DNN training by mixing
layer swapping and recomputing based on a schedule. PoocH
decides on the schedule based on the classification of oper-
ators in a given model, yet the target layers for swapping
or recomputing are determined based on runtime profiling.
Capuchin [14] uses dynamic tracking of tensor access patterns
at runtime. It combines out-of-core with recompute to achieves
the same amount of footprint reduction as the sole out-of-core
approach but with better performance (7%).

It is important to emphasize that all out-of-core methods
do not support multi-GPU, to the authors knowledge. That is
since the weight update regime for multi-GPUs conflicts with
swapping-out layers to CPU. With the massive increase in the
resources required for SoTA models (specially models used in
NLP), an out-of-core solution supporting multi-GPU training
is beneficial for democratizing SoTA NLP research.

4) Model Parallelism: Model parallelism is increasingly
gaining traction as a method to avoid the memory capacity lim-
itation by splitting the model over different GPUs [7], [8], [18],
[21], [22]. FlexFlow [18] notably enables model parallelism by



TABLE I: Limitations and Restrictions of Related Approaches; Label Explanation: OOC = Out-of-core, RECOMP = Redundant Recompu-
tation, MP = Model Parallelism, N = Number of Layers, P = Number of Model Parameters, MN is Multi-node

Name Approach Min.Req. Memory Universal Multi-node Strong Scaling (MN) Fault Tolerance (MN) Ref.
vDNN++ OOC None 7 7 N/A N/A [10]

ooc cuDNN OOC None 7 7 N/A N/A [11]
Gradient Checkpoint RECOMP O(

√
N) 3 3 7 3 [16]

SuperNeurons OOC & RECOMP O(
√
N) 7 7 N/A N/A [12]

PoocH OOC & RECOMP O(
√
N) 7 7 N/A N/A [13]

Graph Partitioning Implicit MP None 3 7 7 7 [17]
FlexFlow Explicit MP O(

√
P ) 7 3 3 7 [18]

KARMA (This work) OOC & RECOMP None 3 3 3 3

splitting any of the dimensions for any type of DNNs. Model
parallelism approaches are invasive and require alteration of
how the model is implemented—on a case by case bases—
depending on how the model tensors are split. Furthermore,
using model parallelism ties the minimum number of GPUs
to be used to the model size. For instance, the Megatron-LM
model [3] requires a minimum of 16 GPUs of 16 GiB memory
capacity. Even solutions that are highly optimized for reducing
the number of GPUs for extremely large models still require
tens or hundreds of GPUs [4]. In summary, model parallelism
approaches are complex, intrusive, and enforce a non-trivial
bound on minimum number of GPUs for large models.

Implicit model parallelism methods partition the dataflow
graph over the GPUs [17], [23], [24]. One limitation of this
pure DAG approaches is the complexity in scaling to multi-
nodes, hence DAG solution so far have been limited to a single
node. In addition scheduling DAGs is an NP-hard problem
with O(V 2) complexity, hence work based on that approach
report significant time and resource overhead [17], [24].

B. Summary of Limitations and Issues in Related Approaches

We highlight the limitations and issues in existing ap-
proaches (see Table I for summary):

• All prior out-of-core methods are limited to a single GPU.
However, unless out-of-core solutions support data parallel
multi-node training, they will not be considered a practical
approach for training large models and/or datasets.

• Using recompute with data parallel training always adds
an overhead. Recomputing layers is used with some of the
out-of-core methods to further relax the memory limitation,
yet in most cases they add an overhead. Contrarily, we use
recomputing to reduce the runtime by reducing the stalls in
the pipeline.

• Both gradient checkpointing and model parallelism enforce
a lower bound on required memory, but this can be an issue
when the lower bound is itself higher than the memory
capacity per device.

• Fault tolerance is a concerning issue with single-GPU out-of-
core methods and model parallel methods. On the contrary,
out-of-core data parallelism (i.e. our KARMA methodology)
could potentially adapt to faults by either relaunching with a
smaller worker pool [25] or shrinking the worker pool [26].

III. KARMA: OUT-OF-CORE DISTRIBUTED TRAINING OF
DEEP NEURAL NETWORKS

A. Overview of KARMA
KARMA enables distributed training of DNNs beyond

memory capacity. As shown in the overview in Figure 1,
KARMA builds a dependency graph of the model and con-
ducts various examinations on the model to extract metadata
that would be used in the performance model of device
occupancy ( 1 and 2 in the figure). Next, KARMA splits
the layers to groups of blocks that optimize for reducing the
total runtime. We reduce the total runtime by formulating a
two-tier constrained optimization problem that maximizes the
device occupancy, which in-turn requires an efficient strategy
to reduce the stalls due to data movement to minimum ( 3 and
4 ). We use a novel scheduling strategy that involves a

capacity-based layer swapping policy interleaved with recom-
putation. Next, KARMA generates an execution plan based
on the identified optimal blocking and recompute strategy 5 ),
and finally replaces the original model code with the new one.

It is important to note that KARMA supports multi-GPU
training. In the case of multi-GPU, steps 4 and 5 change
to introduce a 5-stage pipelined heterogeneous approach for
which the orchestration and execution plan is based on pipelin-
ing phased gradient exchanges with CPU-side weight update.

B. Assumptions and Restrictions
The model in this paper can be generalized to discrete

accelerators, and is not limited to GPUs. The work in this
paper is based on the following assumptions:
• We distinguish two levels of memory: GPU memory is

referred to as near memory and host memory is far memory.
• The interconnect between the two memories is bi-directional

(e.g. PCIe or NVLink).
• Recomputation, i.e. redundant computation, can be utilized

by the performance model.
• Swapping plus recompute strategy and scheduling is applied

on blocks of layers1.
• In most cases, the amount of time required to compute a

block is less than the time required to swap-in/out this block.
• The following families of models are supported: CNNs,

Transformer-based architectures, and fully convolutional
(e.g. U-Net).

1For the reminder of this paper we use the word block to describe a set
of consecutive layers that are bundled together when they are computed,
swapped, and their weights are being updated
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Fig. 1: Overview of KARMA’s workflow

C. Computational Cost of Blocks

We base our performance model and swapping strategy on
the compute and memory requirements of blocks. A multitude
of optimizations are used in DL frameworks [15]. Recent
studies of optimizations in DL frameworks show that those
optimizations have minimal effect on the aggregate number of
operations when combining layers together [27]. Few excep-
tions remain, such as fusing convolution layers with average
pooling using summed array tables [28]. Therefore, our proxy
of the computational cost for each block is the aggregate
number of arithmetic operations (i.e. FLOPS) for all layers
in the block. We then use the concurrency capability of the
target architecture to project the throughput of processing the
blocks on the target architecture.

In the following, we list the compute requirements for layers
that most commonly appear in DNNs2:

1) Convolution Layer: For the kernel size K ·K and C
channels, a convolution layer needs K ·K ·Ci multiply and add
operations. The number of operations for direct convolution of
one sample is:

|Yi| ·K ·K · Ci =Wi+1 ·Hi+1 · Ci+1 ·K ·K · Ci

. Whenever other convolution algorithms are used in cuDNN
to compute the layer, e.g. GEMM-based, we adjust the number
of operations accordingly based on the algorithm type.

2Less common layers are outside the scope of this paper. However, our
performance model is generic: it allows adding new layers, if required.

2) ReLu Layer: The output of a ReLu layer is yi =
max(0,xi). This requires |Yi| comparison operations.

3) Pooling Layer: The total number of operations is:

|Yi| ·K ·K · Ci · c =Wi+1 ·Hi+1 · Ci+1 ·K ·K · Ci

where c is a multiplier adjusted to the number of operations
based on the pooling type (i.e. max vs. average)

4) Batch Normalization Layer: Computing the mini-
batch mean requires |B| operations and the mini-batch vari-
ance requires 2 · |B| operations. The normalization and the
scaling/shifting requires 4 · |Xi| and 2 · |Yi|, respectively. The
total number of operations is: 3 · |B|+ 4 · |Xi|+ 2 · |Yi|.

5) Recurrent Neural Network Layer: Taking LSTM [29]
as the most common type of layer in RNN, four tensors that
form the output of the layer are combined together as input to
form the state of the cell by five operations: the total number of
operations is 20 · |Yi|. It is important to note that we adapt the
number of operations to the specific RNN variant we use in the
model we test. For instance, in attention models [30] used in
machine translation, the decoder RNN additionally receives a
weighted sum of encoder hidden states (attention mechanism),
rather than just the last hidden state of the encoding stage.

6) Self-Attention Layer: Given an input with Q queries’,
K keys’, and V values’ matrices, for queries and keys of
dk dimensions and values of dv dimensions and with a dot-
product as a compatibility function (q.k =

∑dk
i=1 qiki) [30],

the total operations required are 4d3k + d2k + 2|dk|, where
Attention(Q,K, V ) = Softmax(QK

T

√
dk

)V .
7) Fully-Connected Layer: Since yj ← f(

∑
(xiwi,j) +

biasi,j), |WTi| = |Xi|× |Yi|, and |Yi| = Ci, the total number
of operations is: |WTi|

8) Softmax Layer: Since the softmax layer normalizes
its input to a probability distribution, the total number of
operations is 2|Xi|.

9) Other: We do not list here the number of operations for
other layers/operators which we support in our performance
model since they can be simply inferred: dropout, tensor
rescaling/reshaping, tensor element-wise, and tensor add.

D. Memory Requirements

Unlike the computational cost, the memory requirement for
the block depends significantly on the optimizations used by
the memory manager, such as layer fusion, changing memory
layouts, and work space optimizations. Hence, simple aggrega-
tion of memory requirements per layer to estimate the memory
requirements for a block could be highly inaccurate [31].
We use an empirical method that relies on measurements
done on a specific target hardware. Note that the empirical
results gathered through profiling is done offline. Empirically
measuring actual memory used by blocks and layers is not a
straightforward task. Most DL frameworks, including PyTorch
(which we use in this paper), use a caching memory allocator
or manager to speed up memory allocations. As a result, the
values shown in CUDA profilers usually don’t reflect the true
memory usage. In addition, only differentiable training-related
variables and tensors are retained per default, i.e. variables



that require gradients will persist. Major DL frameworks often
provide low-level APIs to monitor their memory allocator at
fine granularity. We conduct a set of experiments to gather
information on the memory required per layer, and also
fused layers commonly occurring together, using PyTorch’s
memory stats() API that monitors the memory occupied by
tensors. We use Nvidia’s profiling tools to monitor the memory
required for non-model data, e.g. contexts created on the GPU.
Finally, after profiling once for each model, we break down
and analyze memory use patterns per variable type, i.e. inputs,
weights, weight gradients, activations, and activation gradients.
This way we can project the memory requirements when we
increase the mini-batch size without the need to repeat the
offline profiling step.

E. Proposed Capacity-based Strategy for Swapping Blocks

1) Occupancy Analysis: The goal of our model is to assure
we maintain the highest possible occupancy3 of the device.
Occupancy in this context factors in the cost of stalling when
overlapping layer swapping and prefetching. The occupancy O
in step j can be represented, using the device’s busy time T busy

j

and ideal time T idle
j , as follows:

Oj := Occupancyj =
T busy
j

T busy
j + T idle

j

(1)

For sake of simplicity, we assume buffers of variable sizes,
where a buffer size is set equal to the total size of the data
arrays containing one or more layers. Hence, the number of
available buffers B, capable of holding data arrays for active
layers in GPU memory at the current time step j, can be a
proxy for occupancy at step j, which means the occupancy,
we seek to maximize, can also be formulated as:

Oj ≈


Bavail
j

Brequ
j

1, for Bavail
j > Brequ

j

(2)

To get the number of available buffers Bavail, we have to know
which buffers are left after processing at the previous step,
and which layers have been swapped in during the same time
period. So, for Bavail

1 := {entire GPU memory} and j ∈ N,
we can calculate Bavail in step j as:

Bavail
j =


Bavail
j−1 −

j−1∑
i=1

(Bswapped-in
i −Bprocessed

i )

0, for Bavail
j−1 ≤ Bswapped-in

j−1 −Bprocessed
j−1

(3)

where Bswapped-in
i and Bprocessed

i are the swapped-in and pro-
cessed buffers at step i, respectively. Note that the buffers are
released and tagged as available after processing on them has
finished. Obviously, if the rate of swap-in grows faster than
processing, then the value of Bavail will approach 0. As Bavail

3Occupancy in this context is not to be mixed with the occupancy metric
of CUDA, but refers to the relative amount of compute time, see eq. (1).

keeps decreasing, Bavail
j−1 could become less than the required

Brequ
j−1, and hence occupancy O would then fall towards 0.

If processing is faster, which is typically the case, the
value will always be bounded by the overall block swap-in
throughput Tswap-in that can be inferred from the hardware
parameters:

Tswap-in = min{ TFM,TNM,TIC } (4)

Where TFM, TNM, and TIC are the block-adjusted throughput
for the far memory (host memory), near memory (device
memory), and inter-connection (PCIe/NVlink), respectively.
As discussed previously, if swap-in is faster than processing,
the memory consumption will finally reach the GPU memory
capacity limit, called CGPU hereafter, and the capability of
swap-in will be affected by the memory space left (since one
would have to wait for buffers to clear). If there is not enough
memory space for swap-in, the number of buffers swapped in
at time step j will be limited to Bavail

j−1.

To control the granularity of the swapping, we divide the
layers into disjoint blocks in both the forward and backward
propagation phases. The start time of each block b is the start
time of processing or swap-in, and for simplicity we assume
they are equivalent. The processing time Tproc(b) defines that
both swap-in and processing finished. Hence, blocks swapped-
in depend on the available buffers from the previous time step:

Bswapped-in
j = min{ Tswap-in · Tproc(b) , Bavail

j−1 } (5)

Accordingly, for active blocks b in time step j, the occu-
pancy can be approximated via:

Oj ≈ max

{
Bavail

j∑
b

(B
processed
j (b) + Tswap-in · Tproc(b))

, 1

}
, (6)

where Bavail
j is defined in Equation 3.

2) Occupancy in Capacity-based Strategy: In this section
we refine the occupancy analysis of the previous section to
accommodate our capacity-based strategy. First we take a
simple example from the related work, e.g. vDNN [32], and
illustrate the shortcomings of their swap-in/out strategy (shown
in Figure 2 (a)). During forward propagation, only swap-
out happens. The simple eager strategy used is to swap-out
whenever one block’s forward step is concluded (including
the last block). This can cause performance inefficiency before
the backward phase starts. More specifically, the GPU has to
wait until the last block is swapped out and then swap it in
again before the backward phase can start. During backward
propagation, the buffer of block b−1 starts swap-in at the same
time as block b starts processing. Accordingly, block b will run
right after both swap-in and b+1 processing is finished. In this
case, different layers have different processing times, while we
can assume the attributes related to swap-in/out stay the same.
If swap-in of b takes more time than processing b+1 (which is
generally expected), there will be idle times during backward
propagation (i.e. stalls), yielding a longer training time.
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Fig. 2: Different swapping strategies (simplified illustration that
assumes the swap-in/out of one block of layers at a time, with swap-
in/out taking double the time of the computation). (a) vDNN [32]
and ooc cuDNN [11] family of solutions may lead to inefficiency
when switching from forward to backward propagation, (b) Proposed
capacity-based schedule can reduce the idle time by swapping in
ahead of time and avoiding swaps when device capacity allows, (c)
Improving capacity-based schedule to further reduce the idle time:
swap-in ahead of time interleaved with recomputing following layers

In this paper we propose an alternative capacity-based
strategy for swapping that we explain in following paragraphs.
Since the swap-in is only affected by the memory capacity
of the GPU, regardless of which block is being processed,
we should keep on swapping in as long as we have enough
memory space for the buffer. This allows us to keep as much
as possible data available for processing at any step (obviously
any wait will cause a drop in the average swap-in throughput).

Figure 2 (b) shows the proposed capacity-based swap strat-
egy. We get the estimate of the memory consumption from the
parameters of the layers in the block by using the empirical
method discussed in Section III-D. This means even before
the forward pass starts, we can know when to stop the swap-
out (from block 5 in this example). When the backward phase
starts, the required data would still remain in the GPU memory,
and therefore the process can start as soon as the forward stage
ends. When one block is processed, the data will be swapped
out immediately, in order to make new space for data to be
swapped in (i.e. prefetched). In this example, block 4 can be
swapped-in in a very early stage to avoid some GPU stalling
caused by data dependency.

Now that we have a clear strategy for swapping data (i.e.
capacity-based swap schedule), we can refine the performance
model based on this. Let the number of active blocks that can
be kept in GPU memory at time step j be Ablksj . At the very
beginning of the backward stage, the processing of the blocks
will not be impacted by the swap-in. If swap-in is fast enough,
all the blocks will be swapped in before the processing of the
first block. But if swap-in is relatively slow, the processing
may finally catch up with swap-in at a certain time step θ,

which satisfies the equation:∑
b∈Ablksθ

Tproc(b) <
Bswapped-in
θ+1

Tswap-in (7)

Once θ is reached, the situation becomes the same as
discussed in the previous section. In addition, if at time step
θ the inequality in Eq. 7 is unsatisfied, that would mean
that processing cannot catch-up with data transfer: the whole
training process can be at 100% device occupancy. Now we
can derive the refined occupancy:

Oj =


Bavail
j

/∑
b∈Ablks

(
Bprocessed
j (b) + Tswap-in · Tproc(b)

)
1, for T < θ where θ occurs when Eq. 7 holds

(8)

The occupancy is the objective function to minimize the
training iteration total runtime when using our proposed out-
of-core strategy. The cost function for compute is calculated
analytically as discussed in Section III-C. The swapping time
is calculated as Tswap-in/out that maximises the occupancy O in
Eq. 8 for the buffers of each block to be transferred. The same
compute and swap models are also used as cost functions for
the recompute optimization that is proposed in the next section.

F. Interleaving Recompute with the Capacity-based Strategy

The capacity-based strategy discussed in the previous sec-
tion reduces the swap-in/out overhead by keeping data in near
memory as long as there is space, along with a FIFO swapping
strategy. However, this could still lead to gaps in the pipeline at
which the processor stalls when waiting for a swap-in to finish
(e.g. backward phase of blocks 4 to 1 in Figure 2 (b)). The
improvement we propose for that method is to interleave the
recomputation of the activations of layers in a block with the
swap-in of preceding block(s). Those redundantly recomputed
layers would have been otherwise swapped-in at the backward
stage. The objective of this interleaving is to make sure the
computation pipeline remains full and one does not stall due to
swapping. The interleaving enables us to overlap compute of
the block before the recomputed block with the blocks being
swapped-in. As shown in Figure 2 (c), recomputation of block
5 could be overlapped with the swap-in of block 3, and 3 is
overlapped with block 1.

1) Dividing Layers to Blocks and Interleaving Recom-
pute: An Optimization Problem: In this section we for-
mulate blocking and interleaving as an optimization problem.
The execution schedule we define includes a serial sequence
of stages. Each stage includes a set of blocks, and independent
operations on those blocks, i.e. operations on a stage can be
overlapped. Deciding on the stages with minimum makespan
necessitates the identification of which layers need to be
contained in each block, with consideration of the trade off
between occupancy and the cost of processing/moving the
blocks. In addition, identifying which blocks can be recom-
puted, rather than swap-in/out to ideally reduce the stalls
in the pipeline, is another point to consider. This two-stage



1 2 3 4 5 6
D H

1
D H

3
D H

3
D H

1

6 5 4 3 2 14 2
Swap-out

(Device à Host)

Processing 
on GPU

1st Iteration 2nd Iteration

D H
6

D H
5

D H
4

D H
3

D H
2

D H
1

6 5 4 3 2 1

6 5 4 3 2 1

Swap-in
(Host à Device)

Gradient Exch.
(MPI_Allreduce)

Weight Update
On CPU

D H
1

D H
2

D H
3

D H
4

D H
5

D H
6

1 2 3 4 5 6
D H

1
D H

3

6 5

D H
3

D H
1

4 3 2 14 2
D H

6
D H

5
D H

4
D H

3
D H

2
D H

1

6 5 4 3 2

6 5 4 3 2 1

Forward Backward Forward Backward

1

Block of Layers
(Swapped)

Block of Layers
(Forward prop.)

Block of Layers
(Backward prop.)1 1

D H
11

Block of Layers
(Weight Update) 1

Block of Layers
(Gradient Exchange)

1 2 3 4 5 6

D H
1

D H
3

D H
3

D H
1

6 5 4 3 2 14 2

Swap-out
(Device à Host)

Processing 
on GPU

D H
6

D H
5

D H
4

D H
3

D H
2

D H
1

6 5 4 3 2 1

6 5 4 3 2 1

Swap-in
(Host à Device)

Gradient Exch.
(MPI_Allreduce)

Weight Update
On CPU

D H
1

D H
2

D H
3

D H
4

D H
5

D H
6

1 2 3 4 5 6

D H
1

D H
3

6 5

D H
3

D H
1

4 3 2 14 2

D H
6

D H
5

D H
4

D H
3

D H
2

D H
1

6 5 4 3 2

6 5 4 3 2 1

1

N
ode 1

N
ode 2

1 2
3

4

5

Fig. 3: Using KARMA for data parallel multi-GPU training (an illustrative example of training for two iterations using two nodes). The
capacity-based strategy for layer swapping is interleaved with block recomputation ( 1 and 2 ). We overlap the gradient computation with
swap-out of blocks to the CPU ( 3 ). We then overlap the gradients exchange ( 4 ) in the backward stage with the weights update ( 5 )
that is done on the CPU side in a heterogeneous manner, before the blocks are swapped back again to the GPU for starting the following
iteration. Iterations after the 2nd iteration are similar to the 2nd iteration

optimization problem is a variation of the dynamic clustering
problem [33] (NP-hard), given that the split that defines the
first layer in each block is not independent from the split that
defines the last layer in the same block (which itself defines the
first layer of the following block). We formulate this two-stage
optimization as an Integer Linear Programming (ILP) problem
to find the boundaries of the blocks that would be swapped,
and from that we extract the stages. Next, we further refine the
stages to reduce their makespan by identifying the schedule for
interleaving recomputation that would minimize the stalls in
the pipeline while satisfying the constraints of device memory
capacity and dependencies in the pipeline.

Different alternatives for the optimization were considered,
including a multi-objective formulation. However, An impor-
tant point to note is that: a) pure recompute (i.e. gradient
checkpointing [16]) and, b) interleaving recompute with swap-
in optimize for different objectives. The aim of recompute
in gradient checkpointing methods is to relax the memory
limitations (with minimal overhead of recomputation). On the
other hand, the goal of recompute in this paper is to reduce
the makespan by efficiently reducing the stalls in the pipeline.
Therefore, doing a two-step optimization allows us to reduce
the search space of interleaving permutations by moving from
the granularity of layers to the granularity of blocks. Moreover,
we assure that the recomputation interleave optimization is
independent of the memory constraint by using a separate
optimization step for the recompute interleave and moving the
memory capacity constraint to the first optimization problem.

2) Problem Formulation: For a layer set L :=
{L1, . . . , Ll} split to a set of blocks B := {B1, . . . , Bb},
finding the execution schedule results in set of stages S :=
{S1, . . . , Ss} having occupancies of O(Si), 1 ≤ i ≤ s,
where each stage includes operations on the blocks to forward
compute, backward compute, swap-in, or swap-out (in short:
fw, bw, in, and out). We have two optimization problems that
are satisfied one after the other. First, grouping the layers into
blocks that would yield stages of maximum occupancy. Next,
refine the stages by identifying blocks to recompute (rather
than swap in/out) to reduce the stalls in the pipeline.

First, the target is to find the b-partition B1 ∪ . . . ∪ Bb
such that: a) the split of the layers over the blocks is pairwise
disjoint and complete, b) operations in a stage are independent
and can be overlapped, c) no stage should exceed the device
memory capacity, and d) the occupancy of each of the stages
O(Si) is maximized. Note that for all 1 ≤ i ≤ s, O(Sj) is
a dynamic value, i.e., the value is calculated depending on
both the make up of the blocks in Si and the efficiency of the
overlap of the operations in the stage. Next, the stages S are
refined to new stages S′ such that a block is recomputed if the
recompute time until the next checkpoint is less than the swap-
in time of the previous block in the path to the checkpoint.

The canonical form of the problem is shown in Figure 4.
Constraints ensure the feasibility. Constraints 9.1, 9.2, and 9.3
ensure that the dependencies in the model are not violated.
Constraint 9.4 enforces the memory capacity limit, and con-
straint 10.1 marks blocks for recompute rather than swapping,
if that reduces the stalls in the execution pipeline.



—- Optimization Problem 1 —-

Input Output
- Layers L := L1→l - Blocks B := B1→b

Maximize
T∑

t=1

Occupancyt (9)

Subject to
l∑

i=1

δijLi = 1 , ∀j ∈ {1, . . . , b} (9.1)∑
δij = 1 , ∀i∀j Li ∈ Bj (9.2)

Cij = 0 , ∀δjm = 1 ∀δin = 1, m < n (9.3)
Mem (t) ≤ Capacity , ∀q ∈ {1, . . . , s} (9.4)

Where∑
Occupancy Occupancy over time T (Eq. 8)

Mem (t) Returns device memory required at step t

Capacity Is device memory capacity avail. for tensors
δij∈{0, 1} δij = 1 if layer Li is in block Bj

Cij∈{0, 1} Cij = 1 if layer Li feeds Layer Lj

—- Optimization Problem 2 —-

Input Output

- Blocks B1→b - New Blocks B′
1→b

Minimize b∑
i=1

Comp(Bi) (10)

Subject to
d∈∆∑
k

Comp
(
Bd

k

)
<

d∈∆∑
k

Swap
(
Bd+1

k

)
, k ∈ {1, . . . , b}

(10.1)
Where

∆ Set of Blocks until next checkpoint
Comp (Bm) Returns the compute time for block Bm

Swap (Bm) Returns the swap time for block Bm

Fig. 4: Block generation formulated as an optimization problem. A
schedule of stages defines both the blocks and the sequence of swaps
and recomputations to execute. Each stage includes an overlap of
independent operations on different blocks in the stage. Output of
optimization problem 1 is input of optimization problem 2

3) Execution Plan Generation: The best feasible solution
to the two-step optimization problem in Figure 4 is used
to generate the execution plan. Algorithm 1 shows how we
generate the schedule of the stages to execute. The following
is an example of the execution plan for the illustrative model
in Figure 2 (c). For a layer l, Fl denotes forward computation,
Bl denotes backward computation, Sinl denotes swap-in, and
Soutl denotes swap-out. The ”→” symbol denotes the start of
the next stage, and ”||” denotes operations done in parallel:
F1 → F2||Sout1 → F3 → F4||Sout3 → F5 → F6 →
B6||Sin3 → B5 → F4 → B4||Sin1 → B3 → F2 → B2 → B1

Algorithm 1 Schedule Generation of Stages
Require: Layers: L
Ensure: Stages: S′ = (∗n → ...→ ∗m), ∗ ∈ {F,B, Sin, Sout}
1: S←0, TStep←0 . Initialization
2: B←Opt1() . Blocks defined by Opt1 in Figure 4
3: while B 6= ∅ do
4: B′←getNext(TStep)
5: newStage←B′

6: S←add(newStage)
7: B←B −B′
8: TStep←TStep+ 1
9: end while

10: B′←Opt2() . Blocks inc. recomp. defined by Opt2 in Figure 4
11: S′←S
12: for b ∈ B′ do
13: if recomp(b) = TRUE then
14: s←getStage(bout)
15: S′←remove(bout)
16: S′←advance(bout+ ). Advance subsequent swap-out perpetually
17: s←getStage(bin)
18: S′←remove(bin)
19: S′←advance(bin+ ) . Advance subsequent swap-ins perpetually
20: newStage←bfw
21: S′←insert(newStage) . Insert recomputed block
22: end if
23: end for

4) Support of Non-linear Models in KARMA: KARMA
supports non-linear models at which there are connections be-
tween non-consecutive layers: residual networks (e.g ResNet),
Transformer-family (e.g. Turing-NLG), and fully convolu-
tional (e.g. U-Net). We inspected the schedules generated by
KARMA for different models. For models with affine residual
connections, the objective function of the first optimization
problem geared the ILP solver towards picking execution plans
at which all connections to the layers in a block come from
the immediate previous block. Candidate execution plans that
have connections that jump over a block would cause a delay
in the swap-out and hence be non-optimal solutions.

There are models with non-affine connections, e.g. U-Net
has connections from layers in the contracting path to layers
in the expansive path. Inspecting the execution plan revealed
that the second optimization problem geared the ILP solver
towards picking execution plans that changes blocks in the
contracting path to recompute, when a layer in the block
has an outgoing connection to a layer in the expansive path.
Candidate execution plans that would not recompute would
be non-optimal solutions since the swapped out blocks in the
contracting path would have to be swapped-in prematurely, i.e.
before the backward pass.

G. Data Parallel KARMA: An Alternative to Hybrid Data/-
Model Parallelism

The rapid increase in model and dataset sizes makes it
imperative for KARMA, and out-of-core solutions in general,
to support multi-GPU and multi-node training. However, dis-
tributed training is a challenge for all out-of-core solutions,
as made evident by the absence of multi-GPU support in all
of the previous out-of-core solutions. In single GPU training,
the weight update is combined with the backward phase. In
typical multi-node or multi-GPU training, where the samples



are divided among the GPUs (i.e. data parallelism), the weight
update requires a separate step. This separate weight update
step follows after computing the gradients and exchanging
them among nodes (or GPUs). However, in out-of-core meth-
ods, the layers (including their weights) do not entirely reside
on the GPU after the end of the backward phase. Since the
layers would not entirely fit on the device memory, a trivial
workaround is to move the layers entirely to the CPU after
the backward phase to apply the weight update there, but this
yields an unacceptable performance penalty.

Our alternative solution for enabling multi-GPU training
requires the expansion of the pipeline of the single GPU
(Figure 2) from a 2-stage to a 5-stage pipeline. As shown
in Figure 3, the three extra stages in the pipeline are as
follows: First ( 3 ), each block is swapped out to the host
after computing the gradients for the layers in the block. Note
that inter-connect (either PCIe and NVLink) is bidirectional,
and therefore swapping out blocks can be overlapped with
the swap-in of early blocks in the model to minimize the
and stalls introduced by this pipeline stage. Second ( 4 ),
rather than exchanging the gradients all at once, we do the
AllReduce exchange of the gradients in phases, i.e. finished
blocks from the end of the model do the exchange for their
gradients without waiting for the other unfinished blocks. The
breakdown of the gradient exchange was recently explored as
a way to overlap communication and backward computation
in distributed synchronous SGD algorithms [34]–[36]. In this
context, however, we do the exchange to the CPU (rather than
GPU) since the blocks were swapped out to the CPU before
the exchange. In this work we specifically adopt the layer
grouping gradient exchange model by Shi et al. [36], since
it requires only minimal modification to be applied to our
approach of grouping layers in blocks. Third ( 5 ), after the
gradients of a block are exchanged, the weights are updated on
the CPU. The computational cost for it is larger than on GPU
(plus it requires implementing the CPU side update). However,
this heterogeneous approach allows us to have a better overlap
with negligible overhead. Note that this also alters the stages
starting from the second iteration (as Figure 3 shows).

H. Integration of KARMA in a Deep Learning Framework

The model is interpreted during training, since we imple-
ment KARMA in PyTorch. For frameworks that use a define-
and-run scheme (e.g. TensorFlow), the execution schedule can
be encoded statically as a new computational graph, but this
is outside of the scope of our work. We extract the forward
and backward phases, then after offline profiling we construct
and solve the two-stage ILP optimization problem using the
MIDACO solver [37], [38]. KARMA then composes the
execution schedule from the solution (i.e. stages) and generates
a new training script. In the new training script, we use CUDA
Unified Memory (UM) technology in addition to a prefetcher.
In our implementation, we used cudaMemPrefetchAsync()
as a data transfer method. Even though we don’t swap data
out explicitly, this method allows us to implicitly apply the
capacity-based strategy described in Section III-E. Since we

TABLE II: Environment Information (ABCI Supercomputer)
Compute nodes (w/ GPU) 1,088 (total 4,352 GPUs)
GPU Nvidia Tesla V100 (SMX2) x4 (16 GiB)
CPU Intel(R) Xeon(R) Gold 6148 x2 (32 GiB×6)
CPU-GPU Interconnect PCI-Express Gen3 x16 (16 GB/s)
GPU-GPU Interconnect NVLINK (50 GB/s)
System Interconnect 100 Gbps EDR InfiniBand x2 (12.5 GB/s)
CUDA v10.1
cuDNN v7.6.1
PyTorch v1.2

TABLE III: Overview of Models and Datasets Used in Experiments
Model Dataset # Samples Parameters Layers

ResNet-50 [2]
ImageNet [6] 1,280,000

> 25M 50
VGG16 [39] > 169M 38
ResNet-200 [2] > 64M 200
WRN-28-10 [40] CIFAR-10 [41] 60,000 > 36M 28
ResNet-1001 [2] > 10M 1001
U-Net [42] ssTEM [43] 30 > 31M 27
Megatron-LM [3] OpenWT [44] 7,200,000 > 8.3B 72
Turing-NLG [4] > 17B 78

are trying to overlap data transfer as much as possible, we
synchronize before the prefetch to make sure the prefetch
will not start too early. Note that PyTorch typically calls the
cuDNN library for processing only after all buffers for the
layer have been prepared (i.e. swapped in) during backward
propagation. We also synchronize after the prefetch to make
sure the data is ready to be processed, or we would risk a
significant penalty from page faulting.

In an ideal prefetch, the prefetch instruction for block b will
be launched to the CUDA stream of the block at the same
time that the backward pass on the layers in block b+ 1 start
running. In this case, although the backward pass of block b
will not even be launched before the data is prefeched properly,
it will start much later, so the performance will not be affected
by the synchronization.

For multi-node KARMA, we initially relied on Nvidia’s
NCCL communication library to implement the phased gra-
dient exchanges. Yet, due to NCCL’s stability issues that
appeared at scale (> 1, 000 GPUs), we instead used the MPI
back-end of the PyTorch communicator (torch.distributed).
Finally, we implemented a stand-alone direct CPU kernel to
update the weights of individual blocks.

IV. EVALUATION

A. Hardware Platform, Models, and Datasets

The following experiments are all performed on ABCI
supercomputer: 8th in the Top500 list (November 2019). The
specifications are shown in Table II.

Table III lists the models and datasets we use in our
experiments and summarizes the relevant features. We use the
same pre-processing configurations and hyper-parameter val-
ues reported by the cited models, unless mentioned otherwise.
The parallel version of MIDACO library [37], [38] we use to
solve the ILP problems converged in under four minutes for
all of our inputs, and is thus negligible.
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B. KARMA for Single GPU

1) Performance: Figure 5 shows the training performance
(samples/second) of different batch sizes4, for different mod-
els. As the batch size grows, the out-of-core effects start to
appear. The performance begins to drop after the memory
footprint exceeds the GPU memory capacity (starting from
the second data point on each x-axis). As discussed earlier, the
data movement time should typically be larger than compute
time when out-of-core is required, yet the performance does
not drop suddenly. Due to our capacity-based strategy, there is
a stage where utilization can still be at 100% in the beginning
of the backward phase. However, as the input size grows,
that duration will become shorter. Finally, the performance
converges to be limited by the data swapping throughput.

In addition to out-of-core methods, we compare with two
recompute methods: Checkmate [20] which reports state-of-
the-art performance and formulates the problem as a con-
strained optimization problem and solves it using ILP, and b)
SuperNeuron [12] (which mixes recompute with out-of-core).
KARMA’s capacity-based strategy interleaved with recompute
outperforms both in all tested models.

2) Efficiency: Figure 6 gives insight into the effectiveness
of combining the capacity-based method with recomputing.
The large spikes appearing towards the end are stalls resulting
from waiting for the swap-in of the convolution layers which
appear early in the model. SuperNeurons’s stalls are spread
out across the layers due to the inaccuracy of the static cost
functions and the designation of swapping vs. recompute based
on the layer type, and not a cost function. KARMA and
KARMA w/recompute, and vDNN++ exhibit more spread out
stalls. However, vDNN++ suffers from an early large spike.
KARMA’s capacity-based approach avoids the swapping of
late layers in the model, which reduces stalls at the start of the
backward phase. Furthermore, vDNN++ includes a significant
number of smaller spikes just before the large spikes. KARMA
w/recompute is more flat between the large spikes since the
interleaved recomputation fills the gaps in the pipeline and
reduces the stalls to only a few unavoidable large spikes.

4In this paper, batch size is synonymous to mini-batch size

TABLE IV: Data Parallel KARMA Configurations and Performance
for Megatron-LM; Label Explanation: H = Hidden Size, A = Atten-
tion Heads, L = Layers, P = Parameters, MP = Model Parallel, DP
= Data Parallel, OCC = Out-of-core (KARMA), Perf = Iter./sec, and
PPL = Zero-shot Perplexity for OpenWebText [44]

H A L P Megatron-LM (‡ Num. GPUs) DP KARMA
MP‡ MP+DP‡ Perf PPL GPUs Perf PPL

1152 12 18 0.7B 1 64 5.8 13.66 32 2.2 13.85
1536 16 40 1.2B 2 128 1.6 10.47 64 0.73 10.34
1920 20 54 2.5B 4 256 2.9 8.21 128 1.94 8.33
2304 24 64 4.2B 8 512 5.0 N/A 256 3.11 N/A
3072 32 72 8.3B 16 1024 8.4 N/A 512 6.3 N/A

Figure 7 shows the best blocking found by KARMA for
ResNet-50 on a V100 GPUs. The blocking of layers by
KARMA results in a well-balanced overlap of data movement
and workload that would reduce the stalling to minimum.
Compared to other methods, the execution plan resulting from
this blocking reduces the stalling by 43% and 37% over
SuperNeurons and vDNN++, respectively.

C. Data Parallel KARMA (Multi-GPU)

In this section we discuss the results of data parallel
KARMA. Table IV shows different configurations tested
for the state-of-the-art Megatron-LM model (based on GPT-
2 [45]). Megatron-LM configurations generate large models
that do not fit in device memory and therefore it was previously
implemented using a model/data-parallel hybrid [3]. This can
be a major limitation for practitioners. For instance, the 8.3
billion parameter configuration requires 8 GPUs with 32 GiB
memory each for 8-way model parallelism which is pro-
hibitive. We use data parallel KARMA to run Megatron-LM
entirely using data parallelism and avoid the complexities of
model parallelism. The performance is listed in Table IV. The
table also shows comparable perplexity in comparison with
Megatron-LM on the OpenWebText dataset [44] (excluding
the last two configurations that are not feasible to train to
completion, given the cost of training).
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We further conduct an experiment at which we use the
same number of GPUs (parity comparison5) for the original
implementation vs. data parallel KARMA (Figure 8). To get a
fair comparison, we also compare to an optimized version of
the original implementation for which we added the phased
gradient exchange. Surprisingly, in the parity comparison,
the pure data parallel KARMA outperforms the model-/data-
parallel hybrid on 2, 048 GPUs. Upon inspection it became
clear that increasing the numbers of GPUs also increases
the communication cost for the original version. Note that
KARMA has fewer iterations (i.e. communication rounds)
since it has a larger mini-batch size. Figure 8 also shows
results for Turing-NLG [4], a 17B parameters model with
state-of-the-art results in NLP. The Turing-NLG model has 78
Transformer layers with a hidden size of 4256 and 28 attention
heads. Turing-NLG is implemented using ZeRO, a memory
optimizer that reduces the memory footprint by splitting
the model parameters, gradients, and optimizer states among
GPUs. Despite the reduction in the memory footprint, large
models, such as Turing-NLG, still require a hybrid of model
and data parallelism. For the same number of GPUs, KARMA
shows less performance than ZeRO, which is expected given
the aggressive memory optimizations in ZeRO. However, we
also tested KARMA on top of ZeRO, i.e. KARMA enabling
the use of the same number of GPUs all in data parallel
mode, rather then the model/data parallel hybrid of ZeRO.
KARMA+ZeRO gives a speedup of 1.35× over ZeRO for
Turing-NLG with up to 2, 048 GPUs.

5We use the term parity to refer to using a number of GPUs with data
parallel KARMA that is equal to the number of GPUs used in the hybrid of
model and data parallel

TABLE V: Cost/Performance Normalized to $/P of First Row.
Number of Samples/GPU Fixed for Data Parallel (at Max of Memory
Capacity). Number of GPUs for Data Parallel KARMA Fixed while
Samples/GPU Increase; Label Explanation: DP = Data Parallel, and
$/P = Cost/Performance (Number of GPUs/training throughput)

ResNet-50 ResNet-200

Batch DP DP KARMA Batch DP DP KARMA
GPUs $/P GPUs $/P GPUs $/P GPUs $/P

12.8K 100 1 100 1 400 100 1 100 1
25.6K 200 1.040 100 1.026 800K 200 1.088 100 1.06
38.4K 300 1.051 100 1.037 1.2K 300 1.093 100 1.066
51.2K 400 1.066 100 1.378 1.6K 400 1.101 100 1.263

64K 500 1.089 100 1.429 2K 500 1.136 100 1.371
76.8K 600 1.092 100 1.483 2.4K 600 1.171 100 1.412

It is important to mention that limitation of the system
scheduler prevented us from running full epochs of Megatron-
LM and Turing-NLG at large scale. As a mitigation strategy,
we split the epoch into separate runs at which we check-
point/restart the model state, and add up the individual runtime
parts for an entire epoch, ignoring the C/R overhead.

Table V shows the cost/performance of two data parallel
models vs. data parallel KARMA (where KARMA is using
fewer GPUs). Interestingly, KARMA can be more cost effec-
tive than data parallelism when initially increasing the number
of GPUs. This is due to the positive effect of the capacity-
based strategy: only an initial small drop in performance
when using KARMA to increase the mini-batch size. However,
data parallelism becomes more cost effective when further
increasing the number of GPUs as the slowdown due to out-
of-core start to magnify.

D. Accuracy

The proposed out-of-core strategy has no impact on the
accuracy of the model since neither the shape nor the hyper-
parameters of the model change. Nonetheless, to assure the
correctness of our implementation, we ran selected configu-
rations to convergence and compared with the reported accu-
racy (same number of epochs and hyper-parameters). ResNet-
50/ImageNet with 256 samples/GPU on a single GPU using
KARMA and 16 GPUs data parallel KARMA achieved 75.9%
and 75.8% accuracy, respectively (vs. 75.9% reported top-
1 accuracy for single crop on the validation dataset [2]).
VGG16/ImageNet with 64 samples/GPU on a single GPU
using KARMA and 32 GPU data parallel KARMA achieved
72% and 72%, respectively (vs. 71.9% reported top-1 accuracy
for single crop on the validation dataset [39]). We also show
perplexity values for the experiments on language models in
Table IV

E. Discussion of Experimental Outcomes

The results and findings of our experiments, using our novel
KARMA methodology, can be summarized as follows:
• KARMA enables a general increase of the batch size, 2x–6x

above the memory limit, with only an average performance
degradation of 9%–37%, outperforming other approaches.

• Our capacity-based strategy and interleaving recomputation
significantly reduces the stalls in the swapping pipeline over
state-of-the-art methods.
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Fig. 7: Best blocking found by KARMA for ResNet-50/ImageNet (batch size = 512) on a V100 SMX2 GPU (16GB)
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Fig. 8: Parallelization performance of two Megatron-LM configura-
tions (Table IV), and Turning-NLG. We compare using the same
number of GPUs (parity). Megatron-LM: we compare the original
data-/model-parallel hybrid, the original plus our optimized phased
gradient exchange, and data parallel KARMA. Turing-NLG: we
compare the hybrid ZeRO reference implementation, data parallel
KARMA, and KARMA used on top of data parallel ZeRO. The mini-
batch size in KARMA is multiplied by the model parallel factor of
the original implementation

• Not only does data parallel KARMA eliminate the need for
model parallelism in models larger than memory capacity,
it also can yield better runtime performance at large scale
when using the same number of GPUs.

• In some cases, data parallel KARMA provides better
cost/performance compared to utilizing more GPUs in exist-
ing data parallel approaches when hitting the memory limit.

V. CONCLUSION

GPU memory capacity can be a major bottleneck for DNN
training workloads. A general solution to this problem are
out-of-core methods. We study the behavior and limitations
of out-of-core methods. We propose a strategy that combines
a capacity-based layer swapping strategy with interleaved
recomputations. Our method outperforms state-of-the-art out-
of-core methods, with a 1.52x speedup on average. Finally,
we extend our method to multi-nodes by using a phased
gradient exchange and CPU-side weight update to construct
a complex pipeline. Our multi-node out-of-core method is a
viable alternative for training large DL models that currently
necessitate complex model parallelism schemes.
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