Routing on the Channel Dependency Graph

SIAM PP'18, Waseda University, Tokyo, 2018-02-09

Satoshi MATSUOKA Laboratory, GSIC, Tokyo Institute of Technology

Jens Domke, Dr.

Jens Dom

~

Motivation

Routing Deadlocks and Deadlock-Prevention Strategies

- Theorem of Dally and Seitz
- Analytical Solution vs. Virtual Channels
- Related Work: Comparison of existing Routing Algorithms

Routing on the Dependency Graph and Nue Routing for HPC

- Shortest-Path Routing + Virtual Channels == Deadlock-Freedom ?
- Routing on the Dependency Graph
- Nue Routing

Evaluation of Nue Routing

- Throughput Comparison for various Topologies
- Runtime and Fault-tolerance of Nue

Summary and Conclusions

虚

Tokyo Tech

Motivation – Interconnection Networks for HPC-Systems

Jens Domke

Motivation – Routing in HPC Network

Tokyo Tech

- Similarities to car traffic, …
- Key metrics: low latency, high throughput, low congestion, fault-tolerant, deadlock-free, utilize (all) available HW
- Low runtimes for fast fault recovery
- Online/reactive vs. offline/proactive path calculation
- Flow-aware/dynamic vs. oblivious
- Static (or adaptive)
 - ... and more
- Highly depended on network topology and technology

[F12]

Motivation – Assumptions for the Remainder of the Talk

- Requirements and assumptions:
 - Network I consists of I = G(N, C)

with $C \subseteq N \times N$

- Routing **R** should be $R(c_i, n_d) = c_{i+1}$ with $n_d \in N \land c_i \in C$
- Resources are limited

Network topology can be

- Switches *S* and terminals *T*, with $S \cup T = N$, connected by full-duplex channels/links *C*
- Destination-based (and unicast)
- Shortest-path and balanced
- Deadlock-free (for lossless technologies)
- Flow-oblivious and static
- Support arbitrary topologies
- Compute power
 - Virtual channels (for deadlock-freedom)
- Regular or irregular
- Faulty during operation

Motivation

Routing Deadlocks and Deadlock-Prevention Strategies

- Theorem of Dally and Seitz
- Analytical Solution vs. Virtual Channels
- Related Work: Comparison of existing Routing Algorithms
- Routing on the Dependency Graph and Nue Routing for HPC
 - Shortest-Path Routing + Virtual Channels == Deadlock-Freedom ?
 - Routing on the Dependency Graph
 - Nue Routing
- Evaluation of Nue Routing
 - Throughput Comparison for various Topologies
 - Runtime and Fault-tolerance of Nue
- Summary and Conclusions

Deadlock [Coffman, 1971]

A set of processes is deadlocked if each process in the set is waiting for an event that only another process in the set can cause.

Lossless interconnection network

- Switches use credit-based flow-control [Kung, 1994] and linear forwarding tables (LFTs)
- Messages forwarded only if receive-buffer available

(similar to deadlocks in wormhole-routed systems [Dally, 1987])

Theorem of Dally and Seitz [Dally, 1987]

A routing algorithm for an interconnection network is deadlock-free, if and only if there are no cycles in the corresponding *channel dependency graph*.

Channel Dependency Graph (CDG)

Figure 11: Using a shortest-path, counter-clockwise routing for network I induces the channel dependency graph D

Routing Deadlocks – Ignoring, Preventing, Avoiding, ...

Tokyo Tech

- Ignoring routing deadlocks
 - "Resolving" via package lifetime [IBTA, 2015]
 - Fast path calculation (e.g., MinHop [MLX, 2013], SSSP [Hoefler, 2009])
- Deadlock-prevention via analytical solution
 - − Topology-awareness required → limited to subset of (non-faulty) topologies
 - Or avoid "bad" turns (e.g., Up*/Down* routing) → poor path balancing [Flich, 2002]
- Deadlock-prevention via virtual channels
 - Allows good path balancing → links/turns aren't limited [Domke, 2011]
 - Requires breaking cycles in the CDG \rightarrow higher time complexity
 - Virtual channels (VCs) are limited (e.g., max. of 15 in IB [Shanley, 2003])
- Others approaches, e.g.
 - Bubble Routing [Wang, 2013] → not supported by current devices
 - Controller principle [Toueg, 1980] → doesn't scale and currently not supported

Routing Deadlocks – Virtual Channels or Virtual Networks

- Virtual channels == multiple sets of individually Version 1 managed credit buffers in one port [Dally, 2003]
 Split channels/links into multiple virtual channels
- Use different channels to generate acyclic channel dependency graph D
- Version 1 (virtual channel transitioning)
 - packets can switch between 'high' and 'low' channel [Dally, 1987]
- Version 2 (combine into virtual layers)
 - 'high' channels build 'high' layer and packets stay within one layer [Skeie, 2002]
- VCs are limited due to implementation costs (control logic, physical buffer size, etc.)

Version 2

[F14]

Related Work: Comparison of existing Routing Algorithms

Routing	Network $I = G(N, C)$	Latency	Through- put	DL - Freedom	#VC	FT	Time Complexity [♯]
DOR [Rauber, 2010]	meshes	+	+	yes	1	no	N/A
Torus-2QoS [MLX, 2013]	2D/3D meshes/tori	+	++	yes	≥2	limited	N/A
Fat-Tree [Zahavi, 2010]	k-ary n-tree	+	++	yes	1	limited	N/A
MinHop [MLX, 2013]	arbitrary	+	+	no	1	yes	$\mathcal{O}(N \cdot C)$
Up*/Down* [Schroeder, 1991]	arbitrary			yes	1	yes	$\mathcal{O}(N \cdot C)$
MUD [Flich, 2002]	arbitrary**	-	-	yes	≥2	yes	$\mathcal{O}(N \cdot C)$
(DF)SSSP [Domke, 2011; Hoefler, 2009]	arbitrary	+	++	(yes*) no	(≥)1	yes	$\mathcal{O}(N ^2 \cdot \log N)$
L-turn [Koibuchi, 2001]	arbitrary	-	-	yes	1	yes	$\mathcal{O}(N ^3)$
LASH [Skeie, 2002]	arbitrary	+	-	yes*	≥ 1	yes	$\mathcal{O}(N ^3)$
LASH-TOR [Skeie, 2004]	arbitrary**	-	-	yes	≥ 1	yes	$\mathcal{O}(N ^3)$
SR [Mejia, 2006]	arbitrary	-	-	yes	1	yes	$\mathcal{O}(N ^3)$
Smart [Cherkasova, 1996]	arbitrary	-	+	yes	1	yes	$\mathcal{O}(N ^9)$
BSOR(M) [Kinsy, 2009]	arbitrary**	+	++†	yes	≥ 1	yes	N/A

#: to (re-)calculate all LFTs for network *I* [Flich, 2012]

*: limited; might exceed available #VCs

**: not easily applicable for destination-based forwarding †: requ. knowledge of bandwidth demands

Jens Domke

Motivation

- Routing Deadlocks and Deadlock-Prevention Strategies
 - Theorem of Dally and Seitz
 - Analytical Solution vs. Virtual Channels
 - Related Work: Comparison of existing Routing Algorithms

Routing on the Dependency Graph and Nue Routing for HPC

- Shortest-Path Routing + Virtual Channels == Deadlock-Freedom ?
- Routing on the Dependency Graph
- Nue Routing
- Evaluation of Nue Routing
 - Throughput Comparison for various Topologies
 - Runtime and Fault-tolerance of Nue
- Summary and Conclusions

Can one ensure deadlock-freedom, while enforcing shortest-path routing? Assuming the following:

- Arbitrary topology and arbitrary but fixed number of VCs (0/1, 2, or more...)
- Routed by destination-based routing algorithm

Routing Deadlocks – Deadlock-Freedom & Shortest-Path

Easy counter example, assume:

- Ring network with 5 nodes; no/one virtual channels; shortest-path routing
- Node n_1 sends messages to n_3 ; n_2 sends to n_4 ; n_3 sends to n_5 ; ...
- ➡ CDG is cyclic → routing is <u>NOT</u> deadlock-free (Theorem of Dally and Seitz)

Proposition

Assuming a limited number of virtual channels, then it can be impossible to remove all cycles from a channel dependency graph, which is induced by a shortest-path routing algorithm.

Motivation

- Routing Deadlocks and Deadlock-Prevention Strategies
 - Theorem of Dally and Seitz
 - Analytical Solution vs. Virtual Channels
 - Related Work: Comparison of existing Routing Algorithms

Routing on the Dependency Graph and Nue Routing for HPC

- Shortest-Path Routing + Virtual Channels == Deadlock-Freedom ?
- Routing on the Dependency Graph
- Nue Routing
- Evaluation of Nue Routing
 - Throughput Comparison for various Topologies
 - Runtime and Fault-tolerance of Nue
- Summary and Conclusions

Routing on the Channel Dependency Graph

Analytical Solution / Turn Model

Step1: restriction of possible turns in *I*Step2: calculate (non-shortest) paths in *I*→ overly restrictive; poor balancing

Virtual Channel Approach

Step1: calculate shortest paths in *I Step2:* create acyclic CDG per virtual layer

needed #VCs is unbound

Combine graph representation of network *I* and CDG *D* into a supergraph and calculate routing in "one step"

(a) 5-node ring network with shortcut

(b) Corresponding complete CDG \overline{D}

Figure 13: Complete CDG \overline{D} for the 5-ring network with shortcut ${\sf Jens}\ {\sf Domke}$

Supergraph Complete Channel Dependency Graph \overline{D}

The Complete Channel Dependency Graph

From the routing-dependent CDG D to the independent complete CDG \overline{D} • Complete CDG $\overline{D} \coloneqq G(C, \overline{E})$, with $\overline{E} \subseteq C \times C$ is defined by

$$\forall (n_x, n_y), (n_y, n_z) \in C, n_x \neq n_z: ((n_x, n_y), (n_y, n_z)) \in \overline{E}$$

Definition

 \overline{D} is cycle-free $\Leftrightarrow D \subseteq \overline{D}$ is acyclic for any Dinduced by a given routing R

Advantages of the complete CDG over network graph

- Includes node/link information
- Includes all possible routes (i.e., all available channel dependencies)
- Allows "on-demand" checks for acyclic subgraphs

Figure 14: Complete CDG \overline{D} for the 5-node ring network with shortcut Routes in the Complete Channel Dependency Graph

- Initially: all edges in \overline{E} are in **unused** state (hence, no routing R applied, yet)
- Step 1: Route from n_3 to n_4 via node $n_5 \rightarrow$ changes edge $(c_{n_3,n_5}, c_{n_5,n_4})$ into **used** state
- Step2: Route from n_5 to n_3 via n_4
- Step3: Route from n₄ to n₅ via n₃? → closes cycle in D
 mark edge blocked → use alternative, direct route c_{n4},n₅

Figure 15: Sketching the process of finding paths between network nodes within the complete $_{\mbox{Jens Domke}}$ CDG \overline{D} while avoiding to close any cycles in the induced CDG D

Motivation

- Routing Deadlocks and Deadlock-Prevention Strategies
 - Theorem of Dally and Seitz
 - Analytical Solution vs. Virtual Channels
 - Related Work: Comparison of existing Routing Algorithms

Routing on the Dependency Graph and Nue Routing for HPC

- Shortest-Path Routing + Virtual Channels == Deadlock-Freedom ?
- Routing on the Dependency Graph
- Nue Routing
- Evaluation of Nue Routing
 - Throughput Comparison for various Topologies
 - Runtime and Fault-tolerance of Nue
- Summary and Conclusions

Create Multiple Virtual Networks and Assign Destinations

- **Nue's goal:** find deadlock-free routes between each pair of nodes in *I* while complying with the VC limitation
- Partition node set N into k: = #VCs disjoint subsets (e.g., w/ METIS [Karypis, 1998])
 - → destinations N_i^d , with $1 \le i \le k$, for routes towards $n \in N_i^d$
- Create k complete CDGs D_i (virtual supergraphs) and assign one destination set to each
- Calculate routes from all (source) nodes to all destinations N_i^d within each complete CDG \overline{D}_i (w/o closing a cycle)

➡ Each CDG is acyclic Nue routing is deadlock-free

Dijkstra's Algorithm and Weight Updates for Balancing

Destination-based Routes

- Use modified Dijkstra's algorithm on complete CDG \overline{D} (similar to (DF-)SSSP routing on I)
- Destination $n_0 \in N_i^d$ acts as source node for Algorithm 2
- Main difference: use edge if and only if no cycle is created

Path balancing

- Use weights for channels
 (additionally to node distances)
- Update channel weights of used links after Algorithm 2 finished
- ➡ Minimizes overlapping of routes if possible

Algorithm 2: Dijkstra's Algorithm within \overline{D} **Input**: $I = G(N, C), \overline{D} = G(C, \overline{E}), \text{ source } n_0 \in N$ **Result**: P_{n_y,n_0} for all $n_y \in N$ (and \overline{D} is cycle-free) 1 foreach node $n \in N$ do $n.distance \leftarrow \infty$ $n.usedChannel \leftarrow \emptyset$ 3 4 $n_0.distance \leftarrow 0$ $c_0.\text{distance} \leftarrow 0$ FibonacciHeap $Q \leftarrow \{c_0\}$ while $Q \neq \emptyset$ do 7 $c_p \leftarrow Q.\operatorname{findMin}()$ 8 foreach $(c_p, c_q) \in \overline{E}$ with (c_p, c_q) .state \neq blocked do 9 // Let $n_{c_q} \in N$ be the tail of directed channel c_q if $c_p.distance + c_q.weight < n_{c_q}.distance$ then 10 (c_p, c_q) .state \leftarrow used // modifies \overline{D} if \overline{D} is cycle-free then $Q.add(c_q)$ c_q .distance $\leftarrow c_p$.distance $+ c_q$.weight 14 n_{c_q} .distance $\leftarrow c_p$.distance $+ c_q$.weight 15 n_{c_q} .usedChannel $\leftarrow c_q$ 16else 17 (c_p, c_q) .state \leftarrow blocked $\mathbf{18}$

办

Tokyo Tech

Checking for Absence of Cycles in the Complete CDG

Nue really checks every edge?

- New **subgraph identification** number ω for each call to Dijkstra's on \overline{D} (Algorithm 2)
- ω gets assigned to each node/edge of \overline{D} identifying connected and **acyclic** subgraphs D $\omega: C \cup \overline{E} \to \mathbb{Z}_0^+ \cup \{-1\}$, with

 $\omega(x) = \begin{cases} -1 & \text{if } D \cup x \text{ form cycle in } \overline{D}, \text{ i.e., } x \text{ is } blocked, \\ 0 & \text{if } x \notin D, \text{ i.e., } x \text{ is } unused, \\ \geq 1 & \text{if } x \text{ is in the } used \text{ state} \end{cases}$

- → No check for $e \in \overline{E}$ → ω(e) = -1, i.e. blocked
 → $ω(e) \ge 1$, already used
 → ω(e) = 0, but merging two different acyclic D
 → acyclic
- ⇒ Cycle check needed $\bullet \omega(e) = 0 \text{ and same } \omega^{\text{Fig}}$ for adjacent nodes $c \in C$

(b) State after five iterations

Figure 16: State change of \overline{D} after five iterations with Algorithm 2, starting from c_{n_1,n_2}

Routing Impasse and Fallback to Escape Paths

Impasse problem

- Iterative path calculation within \overline{D} can get stuck
 - Not all nodes discoverable [Cherkasova, 1996]

Possible solutions

- Backtracking (similar to 8-queens problem, w/ $\#q \gg 8$)
 - Very expensive in term of runtime
- Fallback to escape paths (initial set of used channel dependencies which cannot be mark as blocked)
 - Many impasses for large topologies

Nue's approach

- Use local backtracking (max. 2 hops away) and only fallback to escape paths if necessary
 - Local backtracking works for most impasses
 - ➡ Very time- and memory efficient

(a) Subnetwork I* of a larger network I

- (b) Intermediate state of the complete CDG \overline{D}
- Figure 17: Impasse of Algorithm 2 to reach n₄ based on previously placed routing restrictions

办

Tokyo Tech

Tokya Tech

Algorithm 3: Nue routing calculates all paths within a network I for a given number of virtual channels $k \geq 1$ **Input**: $I = G(N, C), k \in \mathbb{N}$ **Result**: Path P_{n_x,n_y} for all $n_x, n_y \in N$ Partition N into k disjoint subsets N_1^d, \ldots, N_k^d of destinations 1 foreach Virtual layer L_i with $i \in \{1, \ldots, k\}$ do $\mathbf{2}$ // Check attached comments for details about each step Select a subset of nodes $N_i^d \subseteq N$ for virtual layer L_i 3 Create a convex subgraph H_i for N_i^d 4 Identify central $n_{r,i} \in N_i^H$ of H_i 5 Create a new complete CDG \overline{D}_i 6 Define escape paths D_i^s for root $n_{r,i}$ 7 foreach Node $n \in N_i^d$ do 8 Identify deadlock-free paths $P_{.,n}$ 9 Store these paths, e.g., in forwarding tables 10Update channel weights in \overline{D}_i for these paths 11

Motivation

- Routing Deadlocks and Deadlock-Prevention Strategies
 - Theorem of Dally and Seitz
 - Analytical Solution vs. Virtual Channels
 - Related Work: Comparison of existing Routing Algorithms
- Routing on the Dependency Graph and Nue Routing for HPC
 - Shortest-Path Routing + Virtual Channels == Deadlock-Freedom ?
 - Routing on the Dependency Graph
 - Nue Routing

Evaluation of Nue Routing

- Throughput Comparison for various Topologies
- Runtime and Fault-tolerance of Nue
- Summary and Conclusions

Simulation Framework and Simulated Topologies

- Flit-level simulation framework for IB (OMNet++ [Varga, 2008] & ibmodel [Gran, 2011])
- Communication throughput of all-to-all traffic pattern (similar to MPI_Alltoall) with 2 KiB messages
- Multiple topologies with approx. 1,000 compute nodes (or terminals)
- Comparison of Nue to all routing algorithms implemented in OFED OpenSM (if applicable to the topology) Table 1: Topology configurations (w/ link reduined)
- Networks configured as 4xQDR IB with 36-port switches (48-p for Cascade) and 8 virtual channels

Nue simulations for 1VC, ..., 8VCs

Table 1:	Topology	configurations	(w/	\mathbf{link}	redun-
dancy r)	used for th	roughput simu	latior	ıs in	Fig. 10

Topology	Switches	Terminals	Channels	r
Random	125	1,000	1,000	1
6x5x5 3D-Torus	150	1,050	1,800	4
10-ary 3-tree	300	1,100	2,000	1
Kautz $(d = 7, k = 3)$	150	1,050	1,500	2
Dragonfly $(a = 12, p = 6, h = 6, g = 15)$	180	1,080	1,515	1
Cascade (2 groups)	192	1,536	3,072	1
Tsubame2.5	243	1,407	3,384	1

Throughput Comparison for various Topologies

- Throughput shown (higher is better)
- #VCs used by routing listed above bars

Results

- Nue offers competitive performance (between 83.5% (10-ary 3-tree) and 121.4% (Cascade))
- Achievable throughput for Nue grows with available/used #VCs
- Only downside: high number of fallbacks to escape paths can cause worse path balancing
 - diminished throughput

Nue implemented in OpenSM

- Patched OpenSM ntegrated in fail-in-place toolchain for fair runtime comparison
- Created 25 3D torus networks (size: 2x2x2, 2x2x3, 2x3x3,..., 10x10x10) with 4 terminal nodes per switch; InfiniBand with 8 VCs
- Inject 1% random link/channel failures (cf. annual failure rate)

Expected results

- DFSSSP/LASH run out of VCs (→ not deadlock-free)
- Torus-2QoS limited fault-tolerance
- Nue is always applicable

Unexpected results

Faster routing calculation with Nue vs. DFSSSP/LASH

康

Tokyo Tech

Motivation

- Routing Deadlocks and Deadlock-Prevention Strategies
 - Theorem of Dally and Seitz
 - Analytical Solution vs. Virtual Channels
 - Related Work: Comparison of existing Routing Algorithms
- Routing on the Dependency Graph and Nue Routing for HPC
 - Shortest-Path Routing + Virtual Channels == Deadlock-Freedom ?
 - Routing on the Dependency Graph
 - Nue Routing
- Evaluation of Nue Routing
 - Throughput Comparison for various Topologies
 - Runtime and Fault-tolerance of Nue

Summary and Conclusions

Summary – Features of destination-based Nue Routing

Routing	Network $I = G(N, C)$	Latency	Through- put	DL- Freedom	#VC	FT	Time Complexity [♯]
DOR [Rauber, 2010]	Meshes	+	+	yes	1	no	N/A
Torus-2QoS [MLX, 2013]	2D/3D meshes/tori	+	++	yes	≥2	limited	N/A
Fat-Tree [Zahavi, 2010]	k-ary n-tree	+	++	yes	1	limited	N/A
MinHop [MLX, 2013]	arbitrary	+	+	no	1	yes	$\mathcal{O}(N \cdot C)$
		-	• • •				
LASH [Skeie, 2002]	arbitrary	+	-	yes*	≥ 1	yes	$\mathcal{O}(N ^3)$
LASH-TOR [Skeie, 2004]	arbitrary**	-	-	yes	≥ 1	yes	$\mathcal{O}(N ^3)$
SR [Mejia, 2006]	arbitrary	-	-	yes	1	yes	$\mathcal{O}(N ^3)$
Smart [Cherkasova, 1996]	arbitrary	-	+	yes	1	yes	$\mathcal{O}(N ^9)$
BSOR(M) [Kinsy, 2009]	arbitrary**	+	++†	yes	≥ 1	yes	N/A
Nue Routing	arbitrary	+	+/++	yes	≥ 1	yes	$\mathcal{O}(N ^2 \cdot \log N)$

#: to (re-)calculate all LFTs for network I [Flich, 2012]

*: limited; might exceed available #VCs

**: not easily applicable for destination-based forwarding †

[†]: requ. knowledge bandwidth demands

Conclusions

- Routing on the complete CDG: Nue demonstrates new approach to avoid deadlocks with limited VC resources (→ template for new strategies)
- First algorithm to guarantee DL-freedom for arbitrary but fixed #VCs (incl. w/o available VCs)
 - ← Combining Quality-of-Service (QoS) and deadlock-freedom for IB
- Offers competitive bandwidth/latency and path calculation time
 - Throughput from 83.5% to 121.4% for all-to-all traffic pattern compared to best routing
 - Low time complexity $\mathcal{O}(|N|^2 \cdot \log |N|)$ and memory complexity $\mathcal{O}(|N|^2)$
- Applicable to statically routed technologies (e.g., IB, OPA, RoCE, ...)
- Since Jan. 2018 in official & open-source IB stack of the OpenFabrics Alliance

http://git.openfabrics.org/?p=~halr/opensm.git

(or simply wait for next OpenSM release version 3.3.21)

Nue – Japanese chimera combining the advantages of existing routing algorithms

domke.j.aa@m.titech.ac.jp

http://domke.gitlab.io/

References

[Alverson, 2012]	B. Alverson, E. Froese, L. Kaplan, and D. Roweth. Whitepaper: Cray XC [™] Series Network. Tech. rep. WP-Aries01-1112. Cray Inc., Nov. 2012, p. 28. URL: http://www.cray.com/sites/default/files/resources/CrayXCNetwork.pdf
[Banikazemi, 2008]	M. Banikazemi, J. Hafner, W. Belluomini, K. Rao, D. Poff, and B. Abali. "Flipstone: Managing Storage with Fail-in-place and Deferred Maintenance Service Models". In: SIGOPS Oper. Syst. Rev. 42.1 (Jan. 2008), pp. 54–62.
[Besta, 2014]	M. Besta and T. Hoefler, "Slim Fly: A Cost Effective Low-Diameter Network Topology," New Orleans, LA, USA, 2014.
[Birrittella, 2015]	M. S. Birrittella, M. Debbage, R. Huggahalli, J. Kunz, T. Lovett, T. Rimmer, K. D. Under- wood, and R. C. Zak. "Intel Omni- path Architecture: Enabling Scalable, High Performance Fabrics". In: 2015 IEEE 23rd Annual Symposium on High- Performance Interconnects (HOTI). Santa Clara, CA: IEEE, Aug. 2015, pp. 1–9.
[Blake, 2007]	D. Blake and W. Gore. Effect of Passive and Active Copper Cable Interconnects on Latency of Infiniband DDR compliant systems. Sept. 2007.
[Cherkasova, 1996]	L. Cherkasova, V. Kotov, and T. Rokicki. "Fibre channel fabrics: evaluation and design". In: Proceedings of the 29th Hawaii International Conference on System Sciences. Vol. 1. Jan. 1996, pp. 53–62.
[Coffman, 1971]	E. G. Coffman Jr., M. Elphick, and A. Shoshani. "System Deadlocks". In: ACM Computing Surveys 3.2 (1971), pp. 67–78.
[Boden, 2015]	N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. L. Seitz, J. N. Seizovic, and WK. Su. "Myrinet: a gigabit-per- second local area network". In: IEEE Micro 15.1 (Feb. 1995), pp. 29–36.
[Dally, 1987]	W. J. Dally and C. L. Seitz. "Deadlock-Free Message Routing in Multiprocessor Interconnection Networks". In: IEEE Trans. Comput. 36.5 (1987), pp. 547–553.
[Dally, 2003]	W. Dally and B. Towles. Principles and Practices of Interconnection Networks. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2003.
[Derradji, 2015]	S. Derradji, T. Palfer-Sollier, JP. Panziera, A. Poudes, and F. W. Atos. "The BXI Interconnect Architecture". In: Proceedings of the 2015 IEEE 23rd Annual Symposium on High-Performance Interconnects. HOTI '15. Washington, DC, USA: IEEE Computer Society, 2015, pp. 18–25.
[Domke, 2011]	J. Domke, T. Hoefler, and W. E. Nagel. "Deadlock-Free Oblivious Routing for Arbitrary Topologies". In: Proceedings of the 25th IEEE International Parallel & Distributed Processing Symposium (IPDPS). Washington, DC, USA: IEEE Computer Society, May 2011, pp. 613–624. ISBN: 0-7695-4385-7.
[Flich , 2002]	J. Flich, P. López, J. C. Sancho, A. Robles, and J. Duato. "Improving InfiniBand Routing Through Multiple Virtual Networks". In: Proceedings of the 4th International Symposium on High Performance Computing. ISHPC '02. London, UK, UK: Springer- Verlag, 2002, pp. 49–63.
[Flich, 2012]	J. Flich, T. Skeie, A. Mejia, O. Lysne, P. López, A. Robles, J. Duato, M. Koibuchi, T. Rokicki, and J. C. Sancho. "A Survey and Evaluation of Topology-Agnostic Deterministic Routing Algorithms". In: IEEE Transactions on Parallel and Distributed Systems 23.3 (Mar. 2012), pp. 405–425. ISSN: 1045-9219.
[Gran, 2011]	E. G. Gran and SA. Reinemo. "InfiniBand congestion control: modelling and validation". In: Proceedings of the 4th International ICST Conference on Simulation Tools and Techniques. SIMUTools '11. ICST, Brussels, Belgium: ICST (Institute for Computer Sciences, Social- Informatics and Telecommunications Engineering), 2011, pp. 390–397.
[Ho, 1982]	G. Ho and C. Ramamoorthy. "Protocols for Deadlock Detection in Distributed Database Systems". In: IEEE Transactions on Software Engineering SE-8.6 (1982), pp. 554–557.
[Hoefler, 2008]	T. Hoefler, T. Schneider, and A. Lumsdaine. "Multistage Switches are not Crossbars: Effects of Static Routing in High- Performance Networks". In: Proceedings of the 2008 IEEE International Conference on Cluster Computing. IEEE Computer Society, Oct. 2008.

References

[Hoefler, 2009]	T. Hoefler, T. Schneider, and A. Lumsdaine. "Optimized Routing for Large-Scale InfiniBand Networks". In: 17th Annual IEEE Symposium on High Performance Interconnects (HOTI 2009). Aug. 2009.
[Hoefler, 2011]	T. Hoefler and M. Snir. "Generic Topology Mapping Strategies for Large-scale Parallel Architectures". In: Proceedings of the 2011 ACM International Conference on Supercomputing (ICS'11). Tucson, AZ: ACM, June 2011, pp. 75–85.
[IBTA, 2015]	InfiniBand Trade Association. InfiniBand [™] Architecture Specification Volume 1 Release 1.3 (General Specifications). Mar. 2015.
[Karypis, 1998]	G. Karypis and V. Kumar. "Multilevel K-way Partitioning Scheme for Irregular Graphs". In: J. Parallel Distrib. Comput. 48.1 (Jan. 1998), pp. 96–129.
[Kim, 2008]	J. Kim, W. J. Dally, S. Scott, and D. Abts, "Technology-Driven, Highly-Scalable Dragonfly Topology," SIGARCH Comput. Archit. News, vol. 36, no. 3, pp. 77-88, Jun. 2008.
[Kinsy, 2009]	M. A. Kinsy, M. H. Cho, T. Wen, E. Suh, M. van Dijk, and S. Devadas. "Application-aware deadlock-free oblivious routing". In: Proceedings of the 36th annual International Symposium on Computer Architecture. ISCA '09. New York, NY, USA: ACM, 2009, pp. 208–219.
[Kogge, 2008]	P. Kogge, K. Bergman, and S. Borkar, "ExaScale Computing Study: Technology Challenges in Achieving Exascale Systems," University of Notre Dame, Department of Computer Science and Engineering, Notre Dame, Indiana, TR-2008-13, Sep. 2008.
[Koibuchi, 2001]	M. Koibuchi, A. Funahashi, A. Jouraku, and H. Amano. "L-turn routing: an adaptive routing in irregular networks". In: International Conference on Parallel Processing. Sept. 2001, pp. 383–392.
[LANL, 2014]	Los Alamos National Laboratory. Operational Data to Support and Enable Computer Science Research. Apr. 2014. URL: https://institute.lanl.gov/data/fdata/
[Mejia, 2006]	A. Mejia, J. Flich, J. Duato, SA. Reinemo, and T. Skeie. "Segment-based routing: an efficient fault-tolerant routing algorithm for meshes and tori". In: 20th International Parallel and Distributed Processing Symposium, 2006. IPDPS 2006. 2006, p. 10.
[MLX, 2013]	Mellanox Technologies. Mellanox OFED for Linux User Manual Rev. 2.0-3.0.0. Aug. 2013. URL: http://www.mellanox.com/related-docs/prod_software/Mellanox_OFED_ Linux_User_Manual_v2.0-3.0.0.pdf
[Rauber, 2010]	T. Rauber and G. Rünger. Parallel Programming - for Multicore and Cluster Systems. Springer, 2010.
[Schroeder, 1991]	M. D. Schroeder, A. Birell, M. Burrows, H. Murray, R. Needham, T. Rodeheffer, E. Satterthwaite, and C. Thacker. "Autonet: A High-speed, Self-Configuring Local Area Network Using Point-to-Point Links". In: IEEE Journal on Selected Areas in Communications 9.8 (Oct. 1991).
[Shanley, 2003]	T. Shanley, J. Winkles, and I. MindShare. InfiniBand Network Architecture. PC System Architecture Series. Pearson Addison Wesley Prof, 2003.
[Singla, 2012]	A. Singla, CY. Hong, L. Popa, and P. B. Godfrey, "Jellyfish: Networking Data Centers Randomly," in Presented as part of the 9th USENIX Symposium on Networked Systems Design and Implementation (NSDI 12), San Jose, CA, 2012, pp. 225-238.
[Skeie, 2002]	T. Skeie, O. Lysne, and I. Theiss. "Layered Shortest Path (LASH) Routing in Irregular System Area Networks". In: IPDPS '02: Proceedings of the 16th International Parallel and Distributed Processing Symposium. Washington, DC, USA: IEEE Computer Society, 2002, p. 194.
[Skeie, 2004]	T. Skeie, O. Lysne, J. Flich, P. López, A. Robles, and J. Duato. "LASH-TOR: A Generic Transition-Oriented Routing Algorithm". In: ICPADS '04: Proceedings of the Parallel and Distributed Systems, Tenth International Conference. Washington, DC, USA: IEEE Computer Society, 2004, p. 595.
[Toueg, 1980]	S. Toueg. "Deadlock- and livelock-free packet switching networks". In: STOC '80: Proceedings of the 12th annual ACM Symposium on Theory of Computing, New York, NY, USA: ACM, 1980, pp. 94–99.

References

[Varga, 2008]	A. Varga and R. Hornig. "An overview of the OMNeT++ simulation environment". In: Proceedings of the 1st International Conference on Simulation Tools and Techniques for Communications, Networks and Systems & Workshops. Simutools '08. ICST, Brussels, Belgium: ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), 2008, 60:1–60:10.
[Verma, 2010]	A. Verma, S. Ajit, and D. Karanki. Reliability and Safety Engineering. Springer Series in Reliability Engineering. Springer, 2010.
[Wang, 2013]	R. Wang, L. Chen, and T. M. Pinkston. "Bubble Coloring: Avoiding Routing- and Protocol-induced Deadlocks with Minimal Virtual Channel Requirement". In: Proceedings of the 27th International ACM Conference on International Conference on Supercomputing. ICS '13. New York, NY, USA: ACM, 2013, pp. 193–202.
[Yu, 2006]	H. Yu, IH. Chung, and J. Moreira. "Topology Mapping for Blue Gene/L Supercomputer". In: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing. SC '06. New York, NY, USA: ACM, 2006.
[Zahavi , 2010]	E. Zahavi, G. Johnson, D. J. Kerbyson, and M. Lang. "Optimized InfiniBand fat-tree routing for shift all-to-all communication patterns". In: Concurr. Comput. : Pract. Exper. 22.2 (Feb. 2010), pp. 217–231.

[F1]	http://museum.ipsj.or.jp/en/computer/super/0020.html
[F2]	http://wiki.expertiza.ncsu.edu/index.php/CSC/ECE_506_Spring_2010/ch_12_PP
[F3]	https://asc.llnl.gov/computing_resources/bluegenel/
[F4]	https://asc.llnl.gov/computing_resources/bluegenel/configuration.html
[F5]	http://www.fujitsu.com/global/about/resources/news/press-releases/2011/0620-02.html
[F6]	http://www.fujitsu.com/downloads/TC/sc10/interconnect-of-k-computer.pdf
[F7]	http://www.netlib.org/utk/people/JackDongarra/PAPERS/tianhe-2-dongarra-report.pdf
[F8]	http://www.netlib.org/utk/people/JackDongarra/PAPERS/tianhe-2-dongarra-report.pdf
[F9]	https://www.top500.org/news/china-tops-supercomputer-rankings-with-new-93-petaflop-machine/
[F10]	https://commons.wikimedia.org/wiki/File:General_architecture_of_the_Sunway_TaihuLight_system.png
[F11]	http://www.sustainablecitiescollective.com/david-thorpe/198191/europes-most-congested-cities-and-how-cut-traffic-jams
[F12]	https://commons.wikimedia.org/wiki/File:Autobahnen_in_Deutschland.svg
[F13-F15]	http://domke.gitlab.io/paper/slides-domke-routing-2016.pdf
[F16]	https://en.wikipedia.org/wiki/File:Kuniyoshi_Taiba_(The_End).jpg
[F17]	https://pixabay.com/en/question-mark-punctuation-symbol-606955/

Jens Domke