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Motivation – Interconnection Networks for HPC-Systems

Towards ExaScale HPC

≥100.000 nodes [Kogge, 2008]

Fat-trees not sustainable 

Sparse/random topologies

(SimFly [Besta, 2014],

Dragonfly [Kim, 2008],

Jellyfish [Singla, 2012], etc.)

Massive networks

needed to connect

all compute nodes

of supercomputers

(see TOP500 list)
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1993: NWT (NAL)

140 Nodes

Crossbar Network

2004: BG/L (LLNL)

16,384 Nodes

3D-Torus Network

2011: K (RIKEN)

82,944 Nodes

6D Tofu Network

2013: Tianhe-2 (NUDT)

16,000 Nodes

Fat-Tree

[F1]

[F2]

[F3]

[F4]

[F5]

[F6]

[F7]

[F8]

2016: Sunway TaihuLight

(NRCPC) 40,960 Nodes

Fat-Tree

[F10]
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Motivation – Routing in HPC Network

4[F12]

[F11]

Similarities to car traffic, …

Key metrics: low latency, high throughput,

low congestion, fault-tolerant,

deadlock-free, utilize (all) available HW

Low runtimes for fast fault recovery

Online/reactive vs. offline/proactive

path calculation

Flow-aware/dynamic

vs. oblivious

Static (or adaptive)

… and more

➥ Highly depended on network

topology and technology
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Motivation – Assumptions for the Remainder of the Talk

Requirements and assumptions:

– Network I consists of

– Routing R should be 

– Resources are limited

– Network topology can be
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– Switches 𝑆 and terminals 𝑇, with

𝑆 ∪ 𝑇 = 𝑁, connected by full-duplex 

channels/links 𝐶

– Destination-based (and unicast)

– Shortest-path and balanced

– Deadlock-free (for lossless technologies)

– Flow-oblivious and static

– Support arbitrary topologies

– Compute power

– Virtual channels (for deadlock-freedom)

– Regular or irregular

– Faulty during operation
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Lossless interconnection network

Switches use credit-based

flow-control [Kung, 1994] and linear

forwarding tables (LFTs)

Messages forwarded only if

receive-buffer available

(similar to deadlocks in wormhole-routed systems [Dally, 1987])

7

Deadlock [Coffman, 1971]

A set of processes is deadlocked if each process in the 

set is waiting for an event that only another process in the 

set can cause.

Routing Deadlocks – Credit Buffers in Lossless Interconn.

[F13]
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Routing Deadlocks – Channel Dependency Graph

Channel Dependency Graph (CDG)

Channels/links of 𝐼 = 𝐺(𝑁, 𝐶)
are nodes in the CDG 𝐷 = 𝐺(𝐶, 𝐸),

with ordered pairs 𝑛𝑥, 𝑛𝑦 =: 𝑐𝑝 ∈ 𝐶

Connect nodes of 𝐶 of the CDG

only if adjacent links are used

to route messages, i.e.: 

∃ 𝑛𝑦 ∈ 𝑁:𝑅 𝑐𝑝, 𝑛𝑦 = 𝑐𝑞
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Theorem of Dally and Seitz [Dally, 1987]

A routing algorithm for an interconnection network is 

deadlock-free, if and only if there are no cycles in the 

corresponding channel dependency graph.
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Routing Deadlocks – Ignoring, Preventing, Avoiding, …

Ignoring routing deadlocks

– “Resolving” via package lifetime [IBTA, 2015]

– Fast path calculation (e.g., MinHop [MLX, 2013], SSSP [Hoefler, 2009])

Deadlock-prevention via analytical solution

– Topology-awareness required  limited to subset of (non-faulty) topologies

– Or avoid “bad” turns (e.g., Up*/Down* routing)  poor path

balancing [Flich, 2002]

Deadlock-prevention via virtual channels

– Allows good path balancing  links/turns aren’t limited [Domke, 2011]

– Requires breaking cycles in the CDG  higher time complexity

– Virtual channels (VCs) are limited (e.g., max. of 15 in IB [Shanley, 2003])

Others approaches, e.g.

– Bubble Routing [Wang, 2013]  not supported by current devices

– Controller principle [Toueg, 1980]  doesn’t scale and currently not supported

9
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Routing Deadlocks – Virtual Channels or Virtual Networks
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Virtual channels == multiple sets of individually Version 1

managed credit buffers in one port [Dally, 2003]

➥ Split channels/links into multiple

virtual channels

➥ Use different channels to generate 

acyclic channel dependency graph 𝐷

Version 1 (virtual channel transitioning)

– packets can switch between ‘high’

and ‘low’ channel [Dally, 1987] Version 2

Version 2 (combine into virtual layers)

– ‘high’ channels build ‘high’ layer and

packets stay within one layer [Skeie, 2002] 

VCs are limited due to implementation costs

(control logic, physical buffer size, etc.) [F14]
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Related Work: Comparison of existing Routing Algorithms
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♯:  to (re-)calculate all LFTs for network 𝐼 [Flich, 2012] *:   limited; might exceed available #VCs
**: not easily applicable for destination-based forwarding † :  requ. knowledge of bandwidth demands

Routing Network

𝐼 = 𝐺(𝑁, 𝐶)
Latency Through-

put

DL -

Freedom

#VC FT Time 

Complexity♯

DOR [Rauber, 2010] meshes + + yes 1 no N/A

Torus-2QoS [MLX, 2013] 2D/3D

meshes/tori

+ + + yes ≥ 2 limited N/A

Fat-Tree [Zahavi, 2010] k-ary n-tree + + + yes 1 limited N/A

MinHop [MLX, 2013] arbitrary + + no 1 yes 𝒪(|𝑁| ∙ |𝐶|)

Up*/Down* [Schroeder, 1991] arbitrary - - - - yes 1 yes 𝒪(|𝑁| ∙ |𝐶|)

MUD [Flich, 2002] arbitrary** - - yes ≥ 2 yes 𝒪(|𝑁| ∙ |𝐶|)

(DF)SSSP
[Domke, 2011; Hoefler, 2009]

arbitrary + + + (yes*) no (≥)1 yes 𝒪( 𝑁 2 ∙ 𝑙𝑜𝑔 |𝑁|)

L-turn [Koibuchi, 2001] arbitrary - - yes 1 yes 𝒪( 𝑁 3)

LASH [Skeie, 2002] arbitrary + - yes* ≥ 1 yes 𝒪( 𝑁 3)

LASH-TOR [Skeie, 2004] arbitrary** - - yes ≥ 1 yes 𝒪( 𝑁 3)

SR [Mejia, 2006] arbitrary - - yes 1 yes 𝒪( 𝑁 3)

Smart [Cherkasova, 1996] arbitrary - + yes 1 yes 𝒪( 𝑁 9)

BSOR(M) [Kinsy, 2009] arbitrary** + ++† yes ≥ 1 yes N/A
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Routing Deadlocks – Deadlock-Freedom & Shortest-Path

Can one ensure deadlock-freedom, while enforcing shortest-path routing?

Assuming the following:

Arbitrary topology and arbitrary but fixed number of VCs (0/1, 2, or more…)

Routed by destination-based routing algorithm

13

Deadlock-
Freedom

Shortest-

Path

Limited 
#VCs

[F17]
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Routing Deadlocks – Deadlock-Freedom & Shortest-Path

Easy counter example, assume:

Ring network with 5 nodes; no/one virtual channels; shortest-path routing

Node n1 sends messages to n3 ; n2 sends to n4 ; n3 sends to n5 ; …

➥ CDG is cyclic  routing is NOT deadlock-free (Theorem of Dally and Seitz)
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Proposition

Assuming a limited number of virtual channels, then it can be 

impossible to remove all cycles from a channel dependency 

graph, which is induced by a shortest-path routing algorithm. 
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 Supergraph

Complete Channel

Dependency Graph ഥ𝐷

Routing on the Channel Dependency Graph

16

Analytical Solution / Turn Model

Step1: restriction of possible turns in 𝐼
Step2: calculate (non-shortest) paths in 𝐼
➥ overly restrictive; poor balancing

Virtual Channel Approach

Step1: calculate shortest paths in 𝐼
Step2: create acyclic CDG per virtual layer

➥ needed #VCs is unbound

Combine graph representation of

network 𝐼 and CDG 𝐷 into a supergraph

and calculate routing in ”one step”
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The Complete Channel Dependency Graph

17

From the routing-dependent CDG 𝐷 to the independent complete CDG ഥ𝐷

Complete CDG ഥ𝐷 ≔ 𝐺(𝐶, ത𝐸), with ത𝐸 ⊆ 𝐶 × 𝐶 is defined by

∀ 𝑛𝑥, 𝑛𝑦 , 𝑛𝑦, 𝑛𝑧 ∈ 𝐶, 𝑛𝑥 ≠ 𝑛𝑧: 𝑛𝑥, 𝑛𝑦 , 𝑛𝑦, 𝑛𝑧 ∈ ത𝐸

Advantages of the complete CDG over

network graph 

Includes node/link information

Includes all possible routes (i.e., all

available channel dependencies)

Allows “on-demand” checks for acyclic subgraphs

Definition

ഥ𝐷 is cycle-free ⇔ 𝐷 ⊆ ഥ𝐷 is acyclic for any 𝐷
induced by a given routing 𝑅
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Routes in the Complete Channel Dependency Graph

Initially: all edges in ത𝐸 are in unused state (hence, no routing 𝑅 applied, yet)

Step1: Route from 𝑛3 to 𝑛4 via node 𝑛5  changes edge (𝑐𝑛3,𝑛5 , 𝑐𝑛5,𝑛4)

into used state

Step2: Route from 𝑛5 to 𝑛3 via 𝑛4

Step3: Route from 𝑛4 to 𝑛5 via 𝑛3?   closes cycle in ഥ𝐷
➥ mark edge blocked  use alternative, direct route 𝑐𝑛4,𝑛5
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Create Multiple Virtual Networks and Assign Destinations

20

Nue’s goal: find deadlock-free routes between each pair of nodes in 𝐼
while complying with the VC limitation

Partition node set 𝑁 into 𝑘:= #𝑉𝐶𝑠 disjoint

subsets (e.g., w/ METIS [Karypis, 1998])

➥ destinations 𝑁𝑖
𝑑, with 1 ≤ 𝑖 ≤ 𝑘,

for routes towards 𝑛 ∈ 𝑁𝑖
𝑑

Create 𝑘 complete CDGs ഥ𝐷𝑖
(virtual supergraphs) and assign one

destination set to each

Calculate routes from all (source)

nodes to all destinations 𝑁𝑖
𝑑 within

each complete CDG ഥ𝐷𝑖
(w/o closing a cycle)

➥ Each CDG is acyclic  Nue routing is deadlock-free

[F15]
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Dijkstra’s Algorithm and Weight Updates for Balancing

21

Destination-based Routes

Use modified Dijkstra’s algorithm on complete CDG ഥ𝐷 (similar to (DF-)SSSP 

routing on 𝐼)

Destination 𝑛0 ∈ 𝑁𝑖
𝑑

acts as source node for

Algorithm 2

Main difference:

use edge if and only if

no cycle is created

Path balancing

Use weights for channels

(additionally to node distances)

Update channel weights of

used links after Algorithm 2

finished

➥ Minimizes overlapping of routes if possible
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Checking for Absence of Cycles in the Complete CDG

22

Nue really checks every edge?

New subgraph identification number 𝜔 for each

call to Dijkstra’s on ഥ𝐷 (Algorithm 2)

𝜔 gets assigned to each node/edge of ഥ𝐷
identifying connected and acyclic subgraphs 𝐷

➥ No check for 𝑒 ∈ ത𝐸

➥ Cycle check needed

• 𝜔 𝑒 = −1, i.e. blocked

• 𝜔 𝑒 ≥ 1, already used

• 𝜔 𝑒 = 0, but merging

two different acyclic 𝐷
➥ acyclic

• 𝜔 𝑒 = 0 and same 𝜔
for adjacent nodes c ∈ 𝐶
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Routing Impasse and Fallback to Escape Paths

23

Impasse problem

Iterative path calculation within ഥ𝐷 can get stuck

➥ Not all nodes discoverable [Cherkasova, 1996]

Possible solutions

Backtracking (similar to 8-queens

problem, w/ #𝑞 ≫ 8)

➥ Very expensive in term of runtime

Fallback to escape paths (initial set of

used channel dependencies which cannot

be mark as blocked)

➥ Many impasses for large topologies

Nue’s approach

Use local backtracking (max. 2 hops away)

and only fallback to escape paths if necessary

➥ Local backtracking works for

most impasses

➥ Very time- and memory efficient
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Pseudo Code of Nue Routing
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Flit-level simulation framework for IB (OMNet++ [Varga, 2008] & ibmodel [Gran, 2011])

Communication throughput of all-to-all traffic pattern (similar to MPI_Alltoall)

with 2KiB messages

Multiple topologies with approx. 1,000 compute nodes (or terminals)

Comparison of Nue to all routing algorithms implemented in OFED OpenSM

(if applicable to

the topology)

Networks configured

as 4xQDR IB with

36-port switches

(48-p for Cascade)

and 8 virtual channels

Nue simulations

for 1VC, …, 8VCs

Simulation Framework and Simulated Topologies

26
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Throughput Comparison for various Topologies

27

Throughput shown

(higher is better)

#VCs used by routing

listed above bars

Results

➥ Nue offers competitive

performance (between

83.5% (10-ary 3-tree)

and 121.4% (Cascade))

➥ Achievable throughput

for Nue grows with

available/used #VCs

➥ Only downside: high

number of fallbacks to

escape paths can cause

worse path balancing

➥ diminished throughput
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Runtime and Fault-tolerance of Nue Routing

28

Nue implemented in OpenSM

Patched OpenSM ntegrated in fail-in-place toolchain for fair runtime comparison

Created 25 3D torus networks (size: 2x2x2, 2x2x3, 2x3x3,…, 10x10x10) with 4 

terminal nodes per switch; InfiniBand with 8 VCs

Inject 1% random link/channel failures (cf. annual failure rate)

Expected results

DFSSSP/LASH run out of

VCs ( not deadlock-free)

Torus-2QoS limited

fault-tolerance

Nue is always applicable

Unexpected results

Faster routing calculation

with Nue vs. DFSSSP/LASH
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Routing Network
𝐼 = 𝐺(𝑁, 𝐶)

Latency Through-

put

DL-

Freedom

#VC FT Time 

Complexity♯

DOR [Rauber, 2010] Meshes + + yes 1 no N/A

Torus-2QoS [MLX, 2013] 2D/3D

meshes/tori

+ + + yes ≥ 2 limited N/A

Fat-Tree [Zahavi, 2010] k-ary n-tree + + + yes 1 limited N/A

MinHop [MLX, 2013] arbitrary + + no 1 yes 𝒪(|𝑁| ∙ |𝐶|)

Up*/Down* [Schroeder, 

1991]

arbitrary - - - - yes 1 yes

LASH [Skeie, 2002] arbitrary + - yes* ≥ 1 yes 𝒪( 𝑁 3)

LASH-TOR [Skeie, 2004] arbitrary** - - yes ≥ 1 yes 𝒪( 𝑁 3)

SR [Mejia, 2006] arbitrary - - yes 1 yes 𝒪( 𝑁 3)

Smart [Cherkasova, 1996] arbitrary - + yes 1 yes 𝒪( 𝑁 9)

BSOR(M) [Kinsy, 2009] arbitrary** + ++† yes ≥ 1 yes N/A

Nue Routing arbitrary + +/++ yes ≥ 1 yes 𝓞( 𝑵 𝟐 ∙ 𝒍𝒐𝒈 |𝑵|)

♯:  to (re-)calculate all LFTs for network 𝐼 [Flich, 2012] *:   limited; might exceed available #VCs
**:  not easily applicable for destination-based forwarding † :  requ. knowledge bandwidth demands

Summary – Features of destination-based Nue Routing

30
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Conclusions

Routing on the complete CDG: Nue demonstrates new approach to avoid 

deadlocks with limited VC resources ( template for new strategies)

First algorithm to guarantee DL-freedom for arbitrary but fixed #VCs 

(incl. w/o available VCs)

➥ Combining Quality-of-Service (QoS) and deadlock-freedom for IB

Offers competitive bandwidth/latency and path calculation time

– Throughput from 83.5% to 121.4% for all-to-all traffic pattern compared

to best routing

– Low time complexity 𝒪( 𝑁 2 ∙ 𝑙𝑜𝑔 |𝑁|) and memory complexity 𝒪( 𝑁 2)

Applicable to statically routed technologies (e.g., IB, OPA, RoCE, …)

Since Jan. 2018 in official & open-source IB stack of the OpenFabrics Alliance

http://git.openfabrics.org/?p=~halr/opensm.git

(or simply wait for next OpenSM release version 3.3.21)

31

http://git.openfabrics.org/?p=~halr/opensm.git


Nue – Japanese chimera combining

the advantages of existing

routing algorithms

[F16]
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