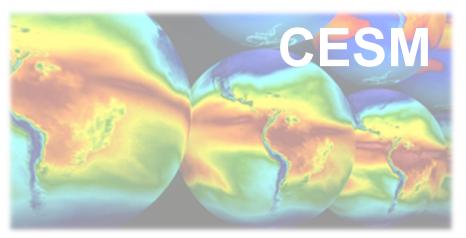
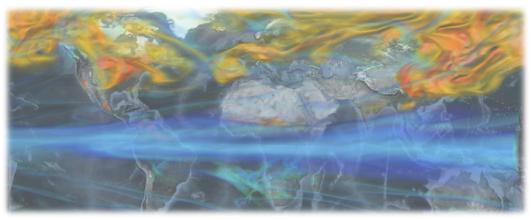

Runtime Tracing of the Community Earth System Model: Feasibility Study and Benefits

ICCS'12 Workshop -Tools for Program Development and Analysis in Computational Science

Jens Domke, JICS, ORNL

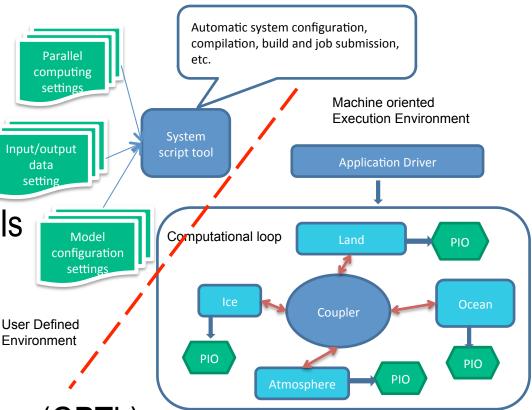


- 1. Introduction
 - Community Earth System Model
 - Performance analysis toolset: Vampir
 - Motivation
- 2. Tracing of CESM
- 3. Outcome of the tracing
- 4. Summary & Conclusion

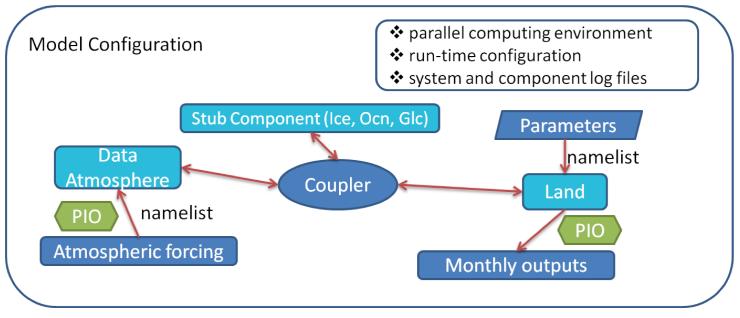


1.1 Community Earth System Model

 One of US's leading earth system modeling frameworks maintained by NCAR



- Early version where developed in the 1980s (Community Climate Model)
- Steady improvements and renaming over last decades
- Intergovernmental Panel on Climate Change (IPCC) uses CESM (among others) for climate reports/forecasts



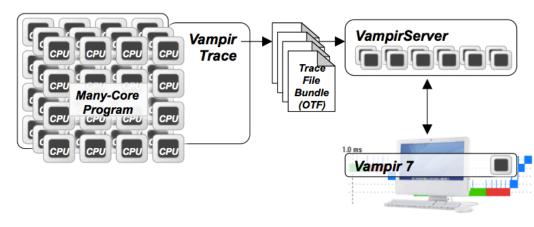
1.1 Community Earth System Model

- Build/configuration system uses C-shell scripts
 - Compilation; configuration; job submission
- Five community model components and data models
 - Atmosphere, ocean, sea ice, land, and land ice sheet
- Coupler and parallel I/O
- General purpose timing library (GPTL)
 - For profiling and access to PAPI counters

1.1 Community Earth System Model

Configuration for simulations on a XT5 (Jaguar, at ORNL)

- Offline global community land model simulation
 - Data atmosphere model (DATM) and active Community Land Model (CLM4)
 - CLM4 with activated CLM-CN (carbon and nitrogen cycle simulation)
 - Stub models for ocean, ice, and glacier


1.2 VampirTrace & Vampir

VampirTrace

- Application instrumentation
- Via compiler wrapper, library wrapper and/ or third-party software
- Measurement
- Event collection (functions calls, MPI, OpenMP, performance counter, memory usage, I/O, GPU)

- Vampir (Client and Server)
 - Trace visualization software
 - Show dynamic run-time behavior graphically
 - Provide statistics and performance metrics
 - Interactive browsing, zooming, selecting capabilities

- Performance analysis and identification of bottlenecks, e.g.
 - Most time consuming functions
 - Inefficient communication patterns
 - Load imbalances
 - I/O bottlenecks

1.3 Motivation

General questions:

- Can VampirTrace generate traces for CESM? (Feasibility study)
- Will those traces reveal more information, compared to the integrated GPTL? (Benefits)
- What can we learn from
 - MPI and I/O analysis
 - PAPI counters

for further developments and simulations?

1. Introduction

- Community Earth System Model
- Performance analysis toolset: Vampir
- 2. Tracing of CESM
- 3. Outcome of the tracing
- 4. Summary & Conclusion

2. VampirTrace Configuration

- Macros.<casename>
 - FC := vtf90 -vt:f90 ftn -vt:mpi -vt:inst tauinst -vt:tau -f -vt:tau tau.selective -vt:cpp fpp -vt:preprocess
 - CC := vtcc -vt:cc cc -vt:mpi -vt:inst tauinst -vt:tau -f -vt:tau tau.selective
- TAU instrumentor → filter functions w/ short duration
- '-vt:tau -f -vt:tau tau.selective' → fix for build system
- '-vt:cpp fpp -vt:preprocess' → TAU problem w/ macros

2. VampirTrace Configuration

• File tau.selective:

- Exclude list for functions with >5.000 calls per process (gathered w/ profiling mode: setenv VT_MODE 'STAT')
- Exclude GPTL functions
- Problems w/ PGI Fortran preprocessor
 - fpp bash script to run pgf90 w/ correct flags and redirect output
- File env_mach_specific
 - module load vampirtrace tau papi
 - setenv VT_IOTRACE 'yes'
 - setenv VT_METRICS 'PAPI_FP_OPS:PAPI_L2_TCM:PAPI_L2_DCA'
 - setenv VT_BUFFER_SIZE 512M

- 1. Introduction
 - Community Earth System Model
 - Performance analysis toolset: Vampir
- 2. Tracing of CESM
- 3. Outcome of the tracing
- 4. Summary & Conclusion

3. Simulation configuration

- Short-term simulation
 - 2 days of simulated climate w/o intermediate restart files
 - 48 cores (4 nodes) on a XT5
 - 48 MPI processes
 - 12 MPI processes + 4 OpenMP threads
 - Functions, I/O events, PAPI counters, MPI, OpenMP tracing
- Long-term simulation
 - One year simulation in four segments; 3 months each (using restart file of previous segment)
 - 240 MPI processes on 240 cores (20 nodes); no OpenMP
 - Only PAPI counters and MPI tracing

3.1 Tracing the short-term simulation

Process 0 Process 3 Process 6 Process 9

Process 12 Process 15

Process 1

Process 2 Process 2 Process 2

Process 30 Process 33 Process 36 Process 39

Process 42

Process 45

100 s

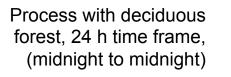
150 s

- Flux coupler runs every 30 min of simulated time
- Heavy global communication in flux coupler
 - Small messages send via point-to-point communication
 - ➔ One reason for poor Strong-Scalability at large scale
- DATM: not OpenMP-parallelized; no PIO

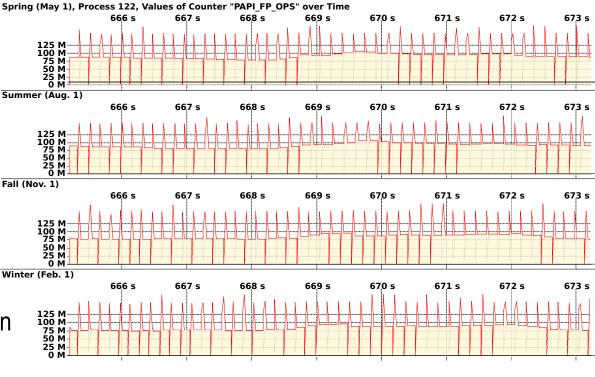
MPI-only case (zoom in for one flux coupler step) 315 s 320 s 325 s 330 s 33 5 s 340 s 345 s 350 s Process 3 Process 6 Process 9 Process 12 Process 15 Process 18 Process 23 Process 24 Process 2 Process 30 Process 33 Process 36 Process 39 336.625 s 336.650 s 336.675 s 336.700 s 336.725 s 336.750 s 336.775 Process 42 Process 45 Proces Process 6 Process 9 Process 1 Process 1 Process 18 Process 21 Process 24 Process 27 Process 30 Process 33 Process 36 Process 39 Process 42

Process 4

3.1 Tracing the short-term simulation


- CSM_SHARE: DATM is
 interpolating climate forcings
- High percentage of MPI
 - Mostly related to imbalance in DATM and MPI_Allreduce
 - − Only \approx 15% MPI within land model
- Most I/O is produced by writing timing information to stdout; rest is reading configuration files (drv, Ind, datm, ...) and writing log files
- BUT: I/O is not a bottleneck (see LIBC-I/O)

All Processes, Ad	cumulated	d Exclusiv	e Time pe	r Function Group
10,000 s 7,5	00s 5,00	00s 2,5	00s 0	S
11,676.659 s				CSM_SHARE
		3,63	33.667 s	MPI
		3,62	27.578 s	LND
			125.86 s	UTILS
			14.958 s	LIBC-I/O
			11.449 s	АТМ
			4.353 s	DRV
			<1 s	VT_API
			<0.1 s	GLC
			< 100 µs	OCN
			< 100 µs	ICE


All Proce	esses, Nu	un	nber of I/O Operations per File Name		
50) k	0	k		
97,992			Sum		
	42,27	5	<stdout></stdout>		
	11,633		drv_in		
	7,699		presaero.stream.txt		
	7,664		clm_cruncep.0.5d.stream.TPQWL.txt		
	7,495		/tmp/work/case/run/Ind.log.120109-161101		
	6,934		clm_cruncep.0.5d.stream.Precip.txt		
	6,856		clm_cruncep.0.5d.stream.Solar.txt		
	1,704		Ind_in		
	1,063		/tmp/work/case/run/cpl.log.120109-161101		
	935		i1850cn_cru_ctl4.clm2.r.1290-01-01-00000.nc		
	697		<stdin></stdin>		
$\langle \mathbf{a} \rangle$	673		datm_atm_in		
())					

3.2 Tracing the long-term simulation

- Computational intensity varies during the 24 h
 - Low flop/s counter at night
 - High counter in the afternoon
- Computational intensity of
 ≈ 76 Mflop/s–96 Mflop/s in winter and fall
- Spring and summer: ≈ 80 Mflop/s–106 Mflop/s
- Reason: strong relationship between land characteristics (e.g. photosynthesis) and climate forcings (like solar radiation, temperature, ...)

- 1. Introduction
 - Community Earth System Model
 - Performance analysis toolset: Vampir
- 2. Tracing of CESM
- 3. Outcome of the tracing
- 4. Summary & Conclusion

4. Summery & Conclusion

- CESM is traceable with low overhead
- VT/Vampir+TAU reveal more information without implementation overhead compared to GPTL
 - Partial automatic data analysis and visual processing
 - But some manual tuning is needed
- I/O operations could be excluded as possible bottleneck
- Heavy global MPI communication in flux coupler
 - Contributes to poor Strong Scalability above 768 cores

4. Summery & Conclusion

- Fine-grained performance analysis with PAPI counters
 - Variance of flop/s counter coupled to the altitude of the sun
 - Seasonal changes in computational intensity via flop/s counter visible
 - Potential to identify short-term climate extremes (like spring freeze or fire); not possible with monthly output
- Future improvements (potential was seen in the traces):
 - Dynamic load balancing during the simulation
 - OpenMP-parallelized implementation of DATM
 - Reduced overhead of flux coupler and timing management utilities

Acknowledgement

- Support by Vampir Team of the Center for Information Services and High Performance Computing (ZIH), Technische Universität Dresden
- Funding from Terrestrial Ecosystem Sciences (TES) Program and from Climate Sciences for Sustainable Energy Future (CSSEF) Program
- Access to resources of Oak Ridge Leadership Computing Facility (OLCF's Jaguar XT5 supercomputer), Oak Ridge National Laboratory

