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Motivation — Interconnection Networks for HPC-Systems

Towards ExaScale

2013:Tianhe-2 (NUDT)
>100.000 nodes [kogge, 2008] 16.000 Nodes ( .

: Fat-Tree
Fat-trees not sustainable
Sparse/random
topologies 2011: K (RIKEN)

- 82,944 Nodes
(SIMFIy [Besta, 2014], 6D Tofu Netw ork_
Dragonfly [im, 2008, S
Jellyfish [singla, 2012], ...)

2004: BG/L (LLNL) §
16,384 Nodes >

1993: NWT (NAL) 3D-Torus Network

140 Nodes =

Crossbar Network =

Routing Metrics:
Low latency
High throughput
Low congestion
Fault-tolerant
Deadlock-free

Low runtimes
for fault recovery

Massive networks
needed to connect
all compute nodes
of supercomputers

(TOP500 [weB, 2015])
;_‘
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Motivation — Assumptions for the Remainder of the Talk

Requirements and assumptions:

Network I consists of

| =G(N,C)
with C < N x N

Routing R should be
R(Ci ’ nd) =G

with ny e N Ac, €C

Resources are limited

Network topology can be —<
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switches, terminals (V) and full-duplex
channels/links (C)

destination-based (and unicast)
shortest-path and balanced

deadlock-free (for lossless
technologies)

flow-oblivious and static

support arbitrary topologies

compute power

virtual channels (for DL-freedom)

regular or irregular
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Routing Deadlocks — Credit Buffers in Lossless Interconnects

Deadlock [coffman, 1971]

A set of processes is deadlocked if each process in the
set is waiting for an event that only another process in the
set can cause.

Lossless interconnection network Package destination

flow-control [kung, 1994] and linear
forwarding tables (LFTS)

L]
Messages forwarded only if H Switch buffer
L]

y

Switches use credit-based i—*.

receive-buffer available

I ./ Package source
|| I =

(similar to deadlocks in wormhole-routed systems [pally, 1987]) O —
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Routing Deadlocks — Channel Dependency Graph

Theorem of Dally and Seitz [paily, 1987]

A routing algorithm for an interconnection network is
deadlock-free, if and only if there are no cycles in the
corresponding channel dependency graph.

Channel Dependency Graph (CDG)

Channels/links of | :=G(N,C) /’ —\
are nodes in the

CDG D = G(C, E) . with Network Induced

(clock-wise cyclic
routing used) CDG

Connect nodes of C of the
CDG if links are used b,
to route messages

(¢i.c;) e E < dpath:=(...,c,cC;,...)
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Routing Deadlocks — Ignoring, Preventing, Avoiding, ...

Ignoring routing deadlocks:

® “Resolving” via package life-time

© Fast path calculation (e.g., MinHop [Conte, 2002], SSSP [Hoefler, 2009])
Deadlock-prevention (analytical solution):

@ Topology-awareness required =» limited to subset of (non-faulty) topologies

@ Or avoid “bad” turns (e.g., Up*/Down* routing) =» poor path balancing [Flich, 2002]

Deadlock-prevention (virtual channels):
© Allows good path balancing = links/turns aren’t limited [Domke, 2011]
@® Requires breaking cycles in the CDG =» higher time complexity

@ Virtual channels (VCs) are limited (e.g., currently 8 and max. of 15 in IB [Shanley, 2003])

Others approaches, e.g.:
Bubble Routing [wang, 2013] =>» not supported by current devices

Controller principle [Toueg, 1980] = global or local observer manages allocation of
resources (doesn't scale or currently not supported)
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Routing Deadlocks — Virtual Channels or Virtual Networks

Virtual Channels

Multiple sets of credit buffers in one port (all managed individually) [pally, 2003]
Split channels/links into multiple virtual channels

w Use different channels to generate acyclic CDG

VCs for deadlock-freedom (option 1)

Use virtual channel transitioning to build acyclic CDG [pally, 1987]
(e.g., packets can switch between ‘high’ and ‘low’ channel)

13

Hoz \U e
o

H‘[]

TECHNISCHE
@ UNIVERSITAT
DRESDEN Jens Domke




Routing Deadlocks — Virtual Channels or Virtual Networks

VCs for deadlock-freedom (option 2)

Combine VCs into virtual layers [skeie, 2002]
(e.g., ‘high’ channels build ‘high’ layer and packets stay within one layer)

Virtual layers == virtual networks and routes within a layer form acyclic CDG

w each layer is deadlock-free = routing is deadlock-free

® VCs are limited due to implementation costs
(control logic, physical buffer size, etc.)
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Related Work: Comparison of existing Routing Algorithms

Routing Network Latency Through- Deadlock- VC Fault- Time
=G(N,C) put Freedom Tolerant Complexity#

DOR [Rauber, 2010] meshes no N/A

Torus-2Qo0S 2D/3D limited N/A
[MLX, 2003] meshes/tori

Fat-Tree [zahavi, 2010] | k-ary n-tree limited N/A

MinHop [Conte, 2002] arbitrary no yes O(|N|*|C|)

Up/Dn [schroeder, 1991] arbitrary yes yes O(|N|*|C|)

MUD [Flich, 2002] arbitrary* * yes yes O(|N|°|C]|)

(DF)SSSP arbitrary (yes*) no yes O(|N|?*log|N|)
[Domke,’11;Hoefler,’09]

LTURN [Koibuchi, 01] arbitrary yes yes O(|N|3)

LASH [Skeie, 2002] arbitrary yes* yes O(|N|3)

LASH-TOR [Skeie,'04] | arbitrary** yes yes O(INT?)

SR [Mejia, 2006] arbitrary - yes yes O(|N|3)

Smart [Cherkasova, 96] arbitrary - + yes yes O(|N1°)

#  to (re-)calculate all LFTs for network I [Flich, 2012] =

TECHNISCHE *:  limited; might exceed available #VCs
UNIVERSITAT **: not easily applicable for destination-based forwarding 2 l H
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Routing Deadlocks — Deadlock-Freedom and Shortest-Path

Assumptions:
Arbitrary topology
Arbitrary but fixed number of VCs (0/1, 2, or more...)
Destination-based routing algorithm

Question:

Can we ensure deadlock-freedom, while enforcing shortest-path routing?

Deadlock-
Feedom

Limited Shortest-
#VCs Path
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Routing Deadlocks — Deadlock-Freedom and Shortest-Path

Easy counter example, assume:
Ring network with 5 nodes; no/one virtual channels; shortest-path routing
Node a sends messages to ¢; b sends to d; c sendsto e; ...

w CDG is cyclic = routing is NOT deadlock-free (Theorem of Dally and Seitz)

(d.e)

O
O —

(c.d)
A

o -> partial CDG (e.a)

o o)
& Ve

(ab)

Assuming a limited number of virtual channels, then it can be

impossible to remove all cycles from a channel dependency

graph, which is induced by a shortest-path routing algorithm.
TECHNISCHE
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Routing on the Channel Dependency Graph

Analytical Solution / Turn Model Virtual Channel Approach

Step 1: restriction of possible turns Step 1: calculate shortest paths in 1
Step 2: calculate (non-shortest) paths Step 2: create acyclic CDGs per VL
w &) overly restrictive; poor balancing w ) needed #VCs is unbound

- o

Combine graph representation of
network 7and CDG into a supergraph

and calculate routing in "one step”

Network I (ring w/ shortcut)

Complete Channel
Dependency Graph

S
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Complete Channel Dependency Graph

What is the complete CDG?

D:=G(C,E) , with .
v(n,,n,),(n,n,)eC,n =n,:((n,n)(n,n,)) ek

Includes node/link information

Includes all possible routes
(i.e., all available channel dependencies)

Size ofB:
|C |=2-|#{links of 1}|

| E |< (max(switch radix)-1)-|C|
Initially: all edges € E are in unused state

w Allows “on-demand” checks for acyclic subgraphs ©
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Routes in the Complete Channel Dependency Graph

Route from
ng to n, via n,

Change edge
to used state

Route from n; to n,
via node ng

Change edge between
Cna,ns — Cns,ng frOM
unused state into
new used state

Route from n, to ng
via ng? _
w closes cycle in D
w mark edge blocked

Use alternative (direct
route) given by C,, s
—nd

ZIH
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Create Multiple Virtual Networks and Assign Destinations

Nue’s goal: find deadlock-free routes between each pair of nodes in 7

Partition node set N into k =#VC

disjoint subsets (e.g., W/ METIS [karypis, 1998])

- destinations N, with 1<i <k,
for routes

Create k complete CDGs
(virtual supergraphs) and assign
. i d
one destination set N,

to each

Calculate routes from all (source) nodes
to all destinations Ni‘]I within each complete CDG (w/o closing a cycle)

w EFach CDG is acyclic = Nue routing is deadlock-free
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Dijkstra’s Algorithm and Weight Updates for Balancing

Destination-based Routes

via modified Dijkstra’s algorithm on complete CDG D
(similar to (DF)SSSP routing on 1)

Algorithm 1: Dijkstra’s Algorithm within D
. . d i pr Y py —
DeStInatlon nd [ NI aCtS as Input: I = &GN, ), D = li':l\li'._-.E'J. BGITCE fig EN
. Result: P,,”.,,” for all ny € N (and D is cycle-free)
source node for Algorithm 1

foreach node n € N do
n.distance +— oo

nn.usedChannel +— @

ng.distance + 0
ep.distance « 0
FibonacciHeap QQ + {co}
while ¢} # i do
cp +— Q. findMin()
foreach (cp,ey) € E with (cp, eg).state # blocked do
/i Let Moy & N be the tail of directed channel Cq

Path b al an Cl n g if e,.distance + ¢4 weight < n. .distance then

I:::JJ,r” ).state +— used // modifies D

Use weights for channels , D e then >
cq-distance +— cp . distance 4 cg. weight

(addltlona”y to nOde dIStanceS) n. .distance 4 1":_..(“}«1.:—1”(:1.‘ { c'q.'.'.'r]ghl

[ ]
Ne,-usedChannel + ¢4

Main difference: use edge if
and only if no cycle is created

1
2
3
L]
5
a8
T
B
a2

Update channel weights of oo " e o ot
used links after Algo. 1 finished | L - =

w Minimizes overlapping of routes if possible

—
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Checking for Absence of Cycles in the Complete CDG

w=1 iCng,ngi

Do we have to check every edge? \ TN

New subgraph identification (@) for each
call to Dijkstra’s (prev. slide)

@ gets assigned to each node/edge of D
identifying connected/acyclic subgraphs

w:CUE — Z§ U{-1}, with
—1 if DUz form cycle in D, i.e., x is blocked,
0 if # € D, i.e., x is unused,
> 1 if x is in the used state
w Cycle check for edge e needed?
o(e) =-1, already blocked
w(e)>1, already used

merging two different acyclic
— subgraphs =» acyclic again

NoO

Yes { @(€) =0 and same @ for
adjacent nodes

TECHNISCHE
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Routing Impasse and Fallback to Escape Paths

Problems

Iterative path calculation
within D can get stuck
w ot all nodes discoverable

Possible solutions

Backtracking (similar to 8-queens
problem, #q >> 8) = very expensive ®

Fallback to “escape paths”
(initial set of used channel dependencies
which cannot be mark as blocked) =» many impasses for large topologies ®

Nue’s approach: use local backtracking (max. 2 hops away) and only fallback
to escape paths if necessary
w very time- and memory efficient
w |ocal backtracking works for most impasses

P
TECHNISCHE Z l H
UNIVERSITAT
Center for Information Services &
High Performance Computing
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Pseudo Code of Nue Routing

Algorithm 2: Nue routing calculates all paths within a
network 7 for a given number of virtual channels £ > 1

Input: I = G(N,C),k e N
Result: Path P, for all ng,n, € N

L .,Tl.-y

Partition N into k disjoint subsets N‘f, Ce ey fo of destinations
foreach Virtual layer L; with i € {1,...,k} do
// Check attached comments for details about each step

Select a subset of nodes N? C N for virtual layer L;
Create a convex subgraph H; for Nid // Section
Identify central n, ; € NE-H of H; // Section

Create a new complete CDG D // Section
Define escape paths D; for root n, ; // Section

foreach Node n € Nf do

Identify deadlock-free paths P. ,, // Section
Store these paths, e.g., in forwarding tables

Update channel weights in D; for these paths
L _—

() I ZIH
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Simulation Framework and Simulated Topologies

Flit-level simulation framework for IB (OMNet++ [varga, 2008] & ibmodel [Gran, 2011])

Communication throughput of all-to-all traffic pattern (similar to MPI_Alltoall)
with 2KiB messages

Multiple topologies with approx. 1,000 compute nodes (or terminals)

Comparison of Nue to all routing algorithms implemented in OFED OpenSM

(if applicable to
the topology) Table 1: Topology configurations (w/ link redun-

dancy r) used for throughput simulations in Fig. 10

Networks ConfiQUfed Topology Switches Terminals Channels r
22 4XQtDR_:BhW'th Random 125 1,000 1,000
-port switches 6x5x5 3D-Torus 150 1,050 1,800

(48-p for Cascade) 10-ary 3-tree 300 1,100 2,000
and 8 virtual channels  Kautz (d = 7.k = 3) 150 1,050 1,500

Nue simulations LoaEal (G 180 1,080 1,515
p=6,h=26,g =1.'_1)

for 1VC, ..., 8VCs S T 192 1,536 3,072
Tsubame2.5 243 1,407 3,384
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Throughput Comparison for various Topologies

Throughput shown (higher is better)

#VCs used by routing 4 Random Topology | 6x5%5 3D-Torus

listed above bars ,

Results =,

© Nue offers competitive g . 2
performance (between 3 ,ﬂ—mﬂ I 1 I WH—H_W
83.5% (10-ary 3-tree) 1

and 121.4% (Cascade)) i g Mory, Tgg iy, Mo, Moy,

© Achievable throughput Tmbmﬂﬁ

for Nue grows with
available/used #VCs

Only downside: high
number of fallbacks to
escape paths can cause
worse path balancing

w diminished throughput
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Runtime and Fault-tolerance of Nue Routing

Nue implemented in OpenSM; and integrated in simulation framework
for fair runtime comparison

Created 25 3D torus networks (size: 2x2x2, 2x2x3, 2x3x3,..., 10x10x10) with
4 terminal nodes per switch; 4xQDR IB with 8 VCs

1% randomly inject link/channel failures (common annual failure rate [pomke, 2014))

10° Nue 8VC
10? DFSSSP
Result LASH

10! Torus-2Q0S
® DFSSSP/LASH run out of & o0

VCs (= not deadlock-free) 107!

® Torus-2QoS not 102
fault-tolerant enough 103

. . -4 L L L L L
© Nue is always applicable U B T
© Faster routing calculation with Number of terminals per 3D torus
Nue vs. DFSSSP/LASH (at larger scale)

o
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Summary — Features of destination-based Nue Routing

Routing

DOR

Network
=G(N,C)

meshes

Latency Throughput

Deadlock- VC

Freedom

Fault-
Tolerant

no

Time
Complexity#
N/A

Torus-
20Q0S

2D/3D

meshes/tori

limited

N/A

Fat-Tree

k-ary n-tree

limited

N/A

(DF)SSSP

arbitrary

yes

O(|N|?#log|N|)

LASH

arbitrary

O(INT)

LASH-TOR

arbitrary* *

O(IN?)

SR

arbitrary

O(INT®)

arbitrary

O(IN°)

arbitrary

+/++

yes

21

O(/N/?*log|N/)

% to (re-)calculate all LFTs for network I T

*:  limited; might exceed available #VCs =
ﬂﬁf&",{gﬁﬁ **: not easily applicable for destination-based forwarding l H
DRESDEN
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Conclusions

Future (and current) networks will be:

Lossless (see ROCE(V2) [zhu, 2015; 1B-A17, 2014], Intel Omni-Path [sirittella, 2015],
InfiniBand [Shanley, 2003], )

Much bigger, but sparse or irregular (e.g., fail-in-place networks [pomke, 2014))

Oblivious, destination-based Nue routing for HPC:

Routing on the complete CDG: Nue demonstrates new approach to avoid
deadlocks with limited VC resources (= template for new strategies)

First algorithm to guarantee DL-freedom for arbitrary but fixed #VCs
w Combining Quality-of-Service (QoS) and deadlock-freedom for IB

Offers competitive bandwidth/latency and path calculation time
Applicable to statically routed technologies (e.g., IB, OPA, RoCE, ...)

Nue routing for escape paths (R;) of fully adaptive routing
(see Duato’s protocol [pally, 2003))

UNIVERSITAT ZIH
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Thank you for your attention!

Nue — Japanese chimera combining
the advantages of existing
routing algorithms

Nue routing for InfiniBand (OpenSM implementation):
http://spcl.inf.ethz.ch/Research/Scalable Networking/Nue/
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