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Exploring and Merging Different Routes to
O(100,000s) Nodes Deep Learning
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Internal discussions (early spring ‘20) R oo

e Prof. Matsuoka eye-opening remarks a long time ago:
“A64FX is more like a GPU than a CPU”

Frameworks
DL frameworks
(TensorFlow, PyTorch, Chainer etc.)

e Brainstorming Alex & Wahib & myself
Low-level libraries
e CUDA does gemm-based conv... why? -> Memory BW CUDNN onedNN || OneDNN
aarch64
e oneDNN focuses on direct conv. (gemm-based only “for debug”) Hardware
e NNPACK / native CPU backends for “normal” CPUs all slow N<\3”F>DL|,A Intel CPU AB4FX

e If AB4AFX “is a GPU”, then why don’t we mimic its computation?

e Option A: use oneDNN'’s internal gemm-based conv
. need rewrite of interface to pytorch, or within high-level API of oneDNN ®

« refactoring torch scripts still necessary; Amdahl’s law issues still present ®
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oneDNN for pytorch (and TF, +others...) S RCCS oot
e Disadvantages of Intel’'s oneDNN approach

Jens Domke

Tedious to port to A64FX (years of engineering by Fujitsu)

GEMM-based convolution not exposed

Tuned for “normal” CPUs with
assumption: Memory is slow

Pytorch scripts need to be
modified (convert model/tensor
with X.to_mkldnn())

Amdahl’s law problem (maybe
too much sequential pytorch stuff
In betw. parallel DNNL sections)
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Option B: can we replace CUDA RT & CUDNN? ¢ ras cuevera

Pytorch (other

HEEI(S)]

Selects backend

NNPACK /
oneDNN / etc

CUDA/TPU/

etc

Slow, only for debug Medium fast, only Fast; not avail. on
“‘normal” CPUs CPU or A64FX

Intercept CUDA
calls & exec on

CPU

Jens Domke



MocCUDA for x86 and A64FX (cuda-"native”) 2 QM e
e Architecture (only functions implemented if called by pytorch):

Wrapper library for CUDA runtime =» Easy ©

Wrapper libs for cudnn (& cublas) =» medium hard (& trivial), but no
reference code available (hence, took more time)

Wrapper libs for native cuda kernels (<<<...>>>in torch’s .cu files)
=» annoying, non-trivial coding / reverse engineering, but doable ®

Async work dispatch queues (cf. cuda streams) =» use Apple’'s GCD
Finally: use SSL2 for BLAS ops; use Horovod for MPI/multi-node

e Time: only 1-2 months of R&D without prior knowledge of CUDA
programming or how to write DL kernels (bnorm, maxpool, conv, etc.)!

e Can run Resnet50 (batchsize >= 2) with LD _PRELOAD=moccuda.so
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Experimental MocCUDA Benchmarking 2 comeme

e Tests on Fugaku:

e Alex github.com/undertherain/benchmarker/ (Infer.: conv2d layer; Train.: Resnet50 w/ synthetic img)

e Fujitsu’s Resnet50 test_train.py script

e Horovod’s synthetic Resnet50 benchmark
e Fujitsu’s official pytorch v1.5 on Fugaku (FJ’s fcc + oneDNN + SSL2)

e Self-compiled Pytorch (v1.4) with CUDA support (nvcc + clangl3 + SSL2)
o CUDA(4Arm)/cudnn “installed” in $SHOME from RPMs

e +3 changes to prevent inline of some functions (= not possible in v1.5 anymore)

e Execute test_train.py (10 epochs), and benchmarker (6 epoch) on A64FX, eg:
for CMGs in (1, 2, 3, 4)
for OMP in (1, 2, ..., 64)
for batch_size in (1, 2, ..., 288)
test_train.py (--type cpu_nomkl | cpu_mkltensor | gpu) & eq. for benchmarker


https://github.com/undertherain/benchmarker/
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Conv2d layer: Img/s (top) & Speedup (bottom) = R mmevemne

o CO nV2d can be - AG4FX with 1 CMGs AG4FX with 4 CMGs
. M Bl native150 —_— Bl native150
Im p|emented as 9 MocCUDA 9 MocCUDA
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Benchmarker: Resnet50 training

ResMeat50 Model Architecture
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Fujitsu’s Resnet50 test_train.py script R RS et

AG4FX with 1 CMGs
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Horovod’s synthetic Resnet50 benchmark e RLCS ottt
. Higher iS better . A64FX with 2 MPI Ranks |
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Primary remaining issue: native CUDA kernels i e

e Pytorch has various tensor operations implemented in native cuda
(add, mul, threshold, softmax, ... more complex ops)

e Number is reducing over time
=» more and more move to libcudnn, libcublas, libcufft, ....

e Number will likely _not_decrease to O
=>» some fn not performance-relevant enough to migrate

=>» Collaboration on automatic Cuda2OpenMP translation/compilation
e Prior art exists (eg. GPU Ocelot, ...) but is outdated

e Approach A: LLVM-IR (collab. w/ Ivan R. Ivanov @TokyoTech)

e Approach B: LLVM-MLIR (collab. w/ William S. Moses @MIT)
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Option A: LLVM-IR (I. Ivanov @TokyoTech) R e
e CUDA execution model: - . .

threadIdx.x;
e Kernels exec. in blocks in grids C[i] = Ali] + BIil;
e Threads in blocks run in parallel SNSRI
e No guarantee about the order of blocks S —
or parallelism of blocks i | (R e ey
. In theorv eaSIIy mapped to Execution of a block on the GPU B:::a:meaﬂh,ea,, aaaaaa Thread|[Thread [Thread|[Thread
6-way nested loop +OMP z 1 2 g z 1 i i
e GPU thread ?= CPU thread mng
=» oversubscribes CPU .

rrrrrr

P

=» GPU barriers... ®




Code transformation: continuation kernels
e Generate continuation kernels (functions)

e Live variable analysis to find state
(variables) necessary to preserve

e DoneonLLVM IR level — - f=..

fl
cont: f2
f2,

» |al >

e Evaluation

e Rodinia (has OpenMP & CUDA
Implementations of the same problem

e Avg. cpucuda runtime 2.5x slower than

oid kernel(float *arg, int a) {

CODE_al;
syncthreads();
CODE az;

for ( ... ) {
CODE_c1;
__syncthreads();
CODE_c2;

__syncthreads();

CODE_e;

p OIII Computer simulations
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LLVM IR (Basic block diagram)
ﬂ
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Option B: LLVM-MLIR (W. Moses @MIT) 2 QM ey
e Polygeist compilation flow (github.com/wsmoses/Polygeist )

-raise-affine ( > Polyhedral Model ] -lower-affine

v Clang -O3
C code —> ——>» MLIR-SCF MLIR-SCF ——>» LLVM-IR _—> Binary

¥ ¥

-emit-llvm

Clang AST

e Generic C/C++ frontend generates “standard” MLIR (multi-level interm. Rep.)
e Raising transformations for transforming “standard”->polyhedral MLIR (affine)
e Embedding of existing polyhedral tools (Pluto, CLooG) into MLIR

e Novel transformations and optimizations (statement splitting, reduction
detection, etc) that rely on high-level compiler representation

e End-to-end evaluation of standard polyhedral benchmarks (Polybench)


https://github.com/wsmoses/Polygeist

Use Polygeist to translate CUDA->OpenMP
e Parallelize within blocks and first-class representation of parallelism

Maintain GPU parallelism in a form understandable to the compiler

Enables optimization between caller and kernel

_device__ int sum(int* in, int n);
__global__ void normalize(int *out, int *in, int n) {
int tid = threadIdx.x;
if (tid < n)
out[tid] = in[tid] / sum(in, n);

void launch({int* out, int* in, int n) {
normalize<<<nblocks, nthreads>>>(out, in, n);

e Remaining issue again: Synchronization Lowering

Efficiently lower a top-level sync by distributing

the parallel_for loop around the sync

Store registers or re-compute values which are required in 2"d loop

parallel for %i = @ to N {
codeA(%1);
sync_threads;
codeB(%i);

}

il

p OIII Computer simulations
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parallel for %i = @ to N {
codeA(%1);

}

parallel_for %i = @ to N {
codeB(%1);

}

Sync. within control flow |zl - oo
for %j = .. {

(fOI’, If, while, etc.) can be codeB1(%1, %1);

sync_threads;

lowered by splitting and | canebae, 39
and InterChangmg IOOpS codeC(%i);

—

o

parallel for %i = @ to N { parallel for %i = @ to N {

codeA{%1i); codeA(%1);
} }
parallel for %i = @ to N { for %j = .. {
for %3 = .. { 1

codeB1(%i, %j);
sync_threads;
codeB2(%i, %j);
¥
}

codeB1(%i, %j);
sync_threads;
codeB2(%i, %j);
}
}

parallel_for %i = @ to N { parallel_for %i = 8 to N {

codeC(%1);
}

codeC(%1);
}

> parallel for %i =@ to N { )
— —

parallel for %i = @ to N {
codeA(%1);

}
for %7 = .. {
parallel for %i =@ to N {
codeB1(%i, %j);

parallel_for %i = @ to N {
codeB2(%i, %j);
}
}
parallel for %i = @ to N {
codeC(%1i);
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Summary and Job/Collaboration Opportunities fR e

e Advantages of MocCUDA & LLVM-IR: e Collaborations and Job opportunities:
e Full control over SW stack; tune as e Our research teams and open positions:
we like (algos/code) w/o Intel https://www.riken.jp/en/research/labs/r-ccs/
and
e CUDA impl. (torch/etc.) implicitly https://bit.ly/3faax8v

supports async dispatch -> no

Amdahl’s law issues e Internship/fellowship (Bachelor->PhD):

e wWww.riken.jp/en/careers/programs/index.html

e Implicit support for other DL

frameworks (incl. those without e Www.r-ccs.riken.jp/en/about/careers/internship/

oneDNN support) e Supercomputer Fugaku:

e Easily integrate diff. precisions / e Apply for node-hours:
kernel fusion (analyze GCD queues) / www.r-ccs.riken.jp/en/fugaku/user-guide/
SVE / etc.

e Interactive, virtual tour:
www.r-ccs.riken.jp/en/fugaku/3d-models/
and
www.youtube.com/watch?v=f3cx4PGDGmg

e Usage potential far beyond just DL
framework =» backporting GPU codes
to HBM-based x86/Arm CPUs

< jens.domke@riken.jp >
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