MocCUDA: Running CUDA
Codes on Fugaku

Slides contrib.: W. Moses (MIT), I. Ivanov (TokyoTech)

Jens Domke, Dr. rer. nat. < jens.domke@riken.jp >
High Performance Big Data Research Team, RIKEN R-CCS, Kobe, Japan

P OIII Computer simulations
.-.m;.H R-CCS create the future

RIKEN R-CCS

III Computer simulations
AUKEH -CCS createthe future

D
=0)

= Collaborators

Operation team ||

Research teams

Application tuning
development unit

High perf. Al system
research team

High perf. BD
research team

Large-scale parallel numerical
computing technology
research team

Unit Leader
Dr. Kazuo MINAMI

.ﬂh-
A Y
Researcher Researcher
Dr. Akiyoshi KURODA Dr. Kiyoshi KUMAHATA
Al

s)

By
Technical Staff Researcher

Mr. Kazuto ANDO Dr. Keigo NITADORI

Director
Dr. Satoshi MATSUOKA

Researcher
Dr. Aleksandr Drozd

Visiting researcher
Dr. Mohamed Wahib

Team Leader
Dr. Kento SATO

Researcher
Dr. Jens Domke

Team Leader
Dr. Toshiyuki IMAMURA

N X

yi'y s

Postdoctoral Researcher
Dr. Shuhei KUDO

(in alphabetical order)

AIST

ARM

Cybozu

Fujitsu
Laboratories

Fujitsu limited

Linaro

Tokyo Tech

Most of the works on the slides are done by Akiyoshi Kuroda in

1
1
1
application tuning development unit led by Kazuo Minami with :

significant assistance by Ikuo Miyoshi from Fujitsu limited '

Exploring and Merging Different Routes to
O(100,000s) Nodes Deep Learning

+

......

— Yoo : 3 2% g | - : | = ", . H as |] .
" i . 3 _ . = | 1]) Data-parallel g Model-parallel Data-parallel
n _“% S A | [A0,CVE | A G VES| [AhGToVE| [Gy ¢ 6 |
" Data-parallel Model-parallel (K-FAC)

Non-intrusive graph-based sl PR Layer-wise distribution and
partitioning strategy for] B} - inverse-free design further
large DNN models achieving a e T wme s w mn . S A model-parallel 2nd-order method accelerate K-FAC [5]

Out-of-core distributed training (pure
data-parallel) outperforming SoTA
NLP models on 2K GPUs [2]

AIST, Matsuoka-lab, RIKEN

superlinear scaling [1] UT Austin, UChicago, ANL

AIST, Koc U.

(K-FAC) trains ResNet-50 on 1K GPUs
Model-parallélism in 10 minutes [4]
enables 3D CNN training Tok
on 2K GPUs with 64x 4)

larger spatial size and . I
better convergence [3] Mergmg Theory

ABAFY wih 4 CAGS

and Practice
Inference (FP32)

L Matsuoka-lab, LLNL, LBL, RIKEN ==
= 450 Dch?rr(\:anL
§- . 400 .- 2% 1
= MocCUDA; Porting CUDA-based . S i ‘
Deep Neural Network Library to . .) Porting CPU.—based Deep Neur.al b & A1)
A64FX and (other CPU arch.) Engineering for Network Library to A64FX chip ..
sove RIKEN, Matsuoka-lab, AIsT Performance Foundation Fujitsu, RIKEN, ARM = w7

[1] M. Fareed et al, “A Computational-Graph Pariitioning Method for Training Memory-Constrained DNNs®, Submitted to PPoPP21
[2] M. Wahib et al., “Scaling Distributed Deep Learning Workloads beyond the Memeory Capacity with KARMA®, ACM/IEEE SC20 {Supercomputing 2020}

10
TFLOPS
Ideal performance @FP32

[51J. G. Pauloski. Z. Zhana. L. Huano. W. Xu. and |. T. Foster. *Convolutional Neural Network Trainina with Distributed K-FAC." arXiv e-prints. op. 1-11. 2020.

= = = (OBl computer simulations
Internal discussions (early spring ‘20) R oo

e Prof. Matsuoka eye-opening remarks a long time ago:
“A64FX is more like a GPU than a CPU”

Frameworks
DL frameworks
(TensorFlow, PyTorch, Chainer etc.)

e Brainstorming Alex & Wahib & myself
Low-level libraries
e CUDA does gemm-based conv... why? -> Memory BW CUDNN onedNN || OneDNN
aarch64
e oneDNN focuses on direct conv. (gemm-based only “for debug”) Hardware
e NNPACK / native CPU backends for “normal” CPUs all slow N<\3”F>DL|,A Intel CPU AB4FX

e If AB4AFX “is a GPU”, then why don’t we mimic its computation?

e Option A: use oneDNN'’s internal gemm-based conv
. need rewrite of interface to pytorch, or within high-level API of oneDNN ®

« refactoring torch scripts still necessary; Amdahl’s law issues still present ®

ﬁ OIII Computer simulations

oneDNN for pytorch (and TF, +others...) S RCCS oot
e Disadvantages of Intel’'s oneDNN approach

Jens Domke

Tedious to port to A64FX (years of engineering by Fujitsu)

GEMM-based convolution not exposed

Tuned for “normal” CPUs with
assumption: Memory is slow

Pytorch scripts need to be
modified (convert model/tensor
with X.to_mkldnn())

Amdahl’s law problem (maybe
too much sequential pytorch stuff
In betw. parallel DNNL sections)

ﬁ OIII Computer simulations

Option B: can we replace CUDA RT & CUDNN? ¢ ras cuevera

Pytorch (other

HEEI(S)]

Selects backend

NNPACK /
oneDNN / etc

CUDA/TPU/

etc

Slow, only for debug Medium fast, only Fast; not avail. on
“‘normal” CPUs CPU or A64FX

Intercept CUDA
calls & exec on

CPU

Jens Domke

MocCUDA for x86 and A64FX (cuda-"native”) 2 QM e
e Architecture (only functions implemented if called by pytorch):

Wrapper library for CUDA runtime =» Easy ©

Wrapper libs for cudnn (& cublas) =» medium hard (& trivial), but no
reference code available (hence, took more time)

Wrapper libs for native cuda kernels (<<<...>>>in torch’s .cu files)
=» annoying, non-trivial coding / reverse engineering, but doable ®

Async work dispatch queues (cf. cuda streams) =» use Apple’'s GCD
Finally: use SSL2 for BLAS ops; use Horovod for MPI/multi-node

e Time: only 1-2 months of R&D without prior knowledge of CUDA
programming or how to write DL kernels (bnorm, maxpool, conv, etc.)!

e Can run Resnet50 (batchsize >= 2) with LD _PRELOAD=moccuda.so

. . (OBl computer simulations
Experimental MocCUDA Benchmarking 2 comeme

e Tests on Fugaku:

e Alex github.com/undertherain/benchmarker/ (Infer.: conv2d layer; Train.: Resnet50 w/ synthetic img)

e Fujitsu’s Resnet50 test_train.py script

e Horovod’s synthetic Resnet50 benchmark
e Fujitsu’s official pytorch v1.5 on Fugaku (FJ’s fcc + oneDNN + SSL2)

e Self-compiled Pytorch (v1.4) with CUDA support (nvcc + clangl3 + SSL2)
o CUDA(4Arm)/cudnn “installed” in $SHOME from RPMs

e +3 changes to prevent inline of some functions (= not possible in v1.5 anymore)

e Execute test_train.py (10 epochs), and benchmarker (6 epoch) on A64FX, eg:
for CMGs in (1, 2, 3, 4)
for OMP in (1, 2, ..., 64)
for batch_size in (1, 2, ..., 288)
test_train.py (--type cpu_nomkl | cpu_mkltensor | gpu) & eq. for benchmarker

https://github.com/undertherain/benchmarker/

P OIII Computer simulations

Conv2d layer: Img/s (top) & Speedup (bottom) = R mmevemne

o CO nV2d can be - AG4FX with 1 CMGs AG4FX with 4 CMGs
. M Bl native150 —_— Bl native150
Im p|emented as 9 MocCUDA 9 MocCUDA
. 2 MW oneDNN150 Il oneDNN150
im2col+gemm & =
g 200 % 600
. . ©w o
e Higher is better 5 .. ©
-g} g 400
A < 100 =2
e Possible to 2 <
1S IS; |
run on 1-to-4 -~ = g
A64 FX C M G S 308 “250 -;27“7‘750‘ S— AB4FX with 4 CMGs e "2;"1‘0_
batchsize ~ ® o9 w0 @ ‘.. I Speedup(/down) of MocCUDA —7 ® P #OMP

e Native CPU
backend usually
worst performance

e NMocCUDA can outperform oneDNN
for large batch sizes
(up to ~4x speedup possible) -

200 >

150 100 =

batch size

Benchmarker: Resnet50 training

ResMeat50 Model Architecture

5 'Ex E.‘: E.‘: 'E.\: =

s i_EE__E.E_Eﬁ_E.E & &
8 i IBERBEREEIEE 2=
S| (87| 87| [8]T e

e e e

Shage Hage 2 Slane 3 Slaged Slage 5

e Full multi-layer resnet50 training
run (forward and back
propagation) possible

35 _

e Higher is better e

Speedup

e ocCUDA outperforms
oneDNN by up to 3x

0 =l
3035%0“;‘ .
5Q

. 0o =
atchsize o~ " " a

Cutput

P m—p

AB4FX with1C

Il Speedup(/di

img/s (higher is better)

0

=1

0 .
50 T, e

100

batch size

A64FX with 1 CMGs

OIII Computer simulations
nms.u R-CCS createthe future

Il native
[MocCUDA
Il oneDNN

OIII Computer simulations

Fujitsu’s Resnet50 test_train.py script R RS et

AG4FX with 1 CMGs

e Lower is better Eraeis]
I MocCUDA
. 0| Il oneDNN150
Y Na‘“ve SIOW, not AGAFX with 3 CMGs
scaling with batch e | EM‘S&E’%
size (OOM issues) g | 5“

e oneDNN big problem | 2.
with #OMP > #cores = &= =———" R
C 2;;0M3|U: © w0 ™y, 10
e MocCUDA almost S
Competltlve ' (B Speedup(/down) of MocCUDA | 0 _As‘é"-“*--—;a)
5 batch size 2°°2;u e _j_‘_,,.,f-)—-ﬂr';u""";o{ﬁf50{_{;‘;

e small #OMP: ~1/2 speed

o #OMP ~= #cores:
5%-20% slower

e >5X speedup for
#OMP > #core o L e kb b b 6

batch size

Speed

p. OIII Computer simulations

Horovod’s synthetic Resnet50 benchmark e RLCS ottt
. Higher iS better . A64FX with 2 MPI Ranks |
B native150

e Left: 2rankson = —vie

1 node; Right: .

scaling #MPI Q

ranks with fixed ‘;a’a

#O M P : 1 2 ; 20 12x A64FX Fugaku nodes
e Native slow o m
e oneDNN best, o]

but with odd batch s?;e R — s 0 5

performance #OMP

behavior (#OMP=1 best; >1 decreasing)

MocCUDA close to oneDNN with 12 cores B ~—~.l
per MPI rank / CMG N ™

. (OBl computer simulations
Primary remaining issue: native CUDA kernels i e

e Pytorch has various tensor operations implemented in native cuda
(add, mul, threshold, softmax, ... more complex ops)

e Number is reducing over time
=» more and more move to libcudnn, libcublas, libcufft,

e Number will likely _not_decrease to O
=>» some fn not performance-relevant enough to migrate

=>» Collaboration on automatic Cuda2OpenMP translation/compilation
e Prior art exists (eg. GPU Ocelot, ...) but is outdated

e Approach A: LLVM-IR (collab. w/ Ivan R. Ivanov @TokyoTech)

e Approach B: LLVM-MLIR (collab. w/ William S. Moses @MIT)

OIII Computer simulations

Option A: LLVM-IR (I. Ivanov @TokyoTech) R e
e CUDA execution model: - . .

threadIdx.x;
e Kernels exec. in blocks in grids C[i] = Ali] + BIil;
e Threads in blocks run in parallel SNSRI
e No guarantee about the order of blocks S —
or parallelism of blocks i | (R e ey
. In theorv eaSIIy mapped to Execution of a block on the GPU B:::a:meaﬂh,ea,, aaaaaa Thread|[Thread [Thread|[Thread
6-way nested loop +OMP z 1 2 g z 1 i i
e GPU thread ?= CPU thread mng
=» oversubscribes CPU .

rrrrrr

P

=» GPU barriers... ®

Code transformation: continuation kernels
e Generate continuation kernels (functions)

e Live variable analysis to find state
(variables) necessary to preserve

e DoneonLLVM IR level — - f=..

fl
cont: f2
f2,

» |al >

e Evaluation

e Rodinia (has OpenMP & CUDA
Implementations of the same problem

e Avg. cpucuda runtime 2.5x slower than

oid kernel(float *arg, int a) {

CODE_al;
syncthreads();
CODE az;

for (...) {
CODE_c1;
__syncthreads();
CODE_c2;

__syncthreads();

CODE_e;

p OIII Computer simulations
nmz.u R-CCS createthe future

LLVM IR (Basic block diagram)
ﬂ

Runtime of kernels

9.34 9,09

56T
1717 (240 2066

3.08254

g
5 100
o

11111

native OpenMP (ranging from 20x speedup

to 37x slowdown

N 4 - = o

cccccccccccccccccccc

Option B: LLVM-MLIR (W. Moses @MIT) 2 QM ey
e Polygeist compilation flow (github.com/wsmoses/Polygeist)

-raise-affine (> Polyhedral Model] -lower-affine

v Clang -O3
C code —> ——>» MLIR-SCF MLIR-SCF ——>» LLVM-IR _—> Binary

¥ ¥

-emit-llvm

Clang AST

e Generic C/C++ frontend generates “standard” MLIR (multi-level interm. Rep.)
e Raising transformations for transforming “standard”->polyhedral MLIR (affine)
e Embedding of existing polyhedral tools (Pluto, CLooG) into MLIR

e Novel transformations and optimizations (statement splitting, reduction
detection, etc) that rely on high-level compiler representation

e End-to-end evaluation of standard polyhedral benchmarks (Polybench)

https://github.com/wsmoses/Polygeist

Use Polygeist to translate CUDA->OpenMP
e Parallelize within blocks and first-class representation of parallelism

Maintain GPU parallelism in a form understandable to the compiler

Enables optimization between caller and kernel

_device__ int sum(int* in, int n);
__global__ void normalize(int *out, int *in, int n) {
int tid = threadIdx.x;
if (tid < n)
out[tid] = in[tid] / sum(in, n);

void launch({int* out, int* in, int n) {
normalize<<<nblocks, nthreads>>>(out, in, n);

e Remaining issue again: Synchronization Lowering

Efficiently lower a top-level sync by distributing

the parallel_for loop around the sync

Store registers or re-compute values which are required in 2"d loop

parallel for %i = @ to N {
codeA(%1);
sync_threads;
codeB(%i);

}

il

p OIII Computer simulations
% R

KN -CCS createthe future

parallel for %i = @ to N {
codeA(%1);

}

parallel_for %i = @ to N {
codeB(%1);

}

Sync. within control flow |zl - oo
for %j = .. {

(fOI’, If, while, etc.) can be codeB1(%1, %1);

sync_threads;

lowered by splitting and | canebae, 39
and InterChangmg IOOpS codeC(%i);

—

o

parallel for %i = @ to N { parallel for %i = @ to N {

codeA{%1i); codeA(%1);
} }
parallel for %i = @ to N { for %j = .. {
for %3 = .. { 1

codeB1(%i, %j);
sync_threads;
codeB2(%i, %j);
¥
}

codeB1(%i, %j);
sync_threads;
codeB2(%i, %j);
}
}

parallel_for %i = @ to N { parallel_for %i = 8 to N {

codeC(%1);
}

codeC(%1);
}

> parallel for %i =@ to N {)
— —

parallel for %i = @ to N {
codeA(%1);

}
for %7 = .. {
parallel for %i =@ to N {
codeB1(%i, %j);

parallel_for %i = @ to N {
codeB2(%i, %j);
}
}
parallel for %i = @ to N {
codeC(%1i);

. 00 (OBl computer simulations
Summary and Job/Collaboration Opportunities fR e

e Advantages of MocCUDA & LLVM-IR: e Collaborations and Job opportunities:
e Full control over SW stack; tune as e Our research teams and open positions:
we like (algos/code) w/o Intel https://www.riken.jp/en/research/labs/r-ccs/
and
e CUDA impl. (torch/etc.) implicitly https://bit.ly/3faax8v

supports async dispatch -> no

Amdahl’s law issues e Internship/fellowship (Bachelor->PhD):

e wWww.riken.jp/en/careers/programs/index.html

e Implicit support for other DL

frameworks (incl. those without e Www.r-ccs.riken.jp/en/about/careers/internship/

oneDNN support) e Supercomputer Fugaku:

e Easily integrate diff. precisions / e Apply for node-hours:
kernel fusion (analyze GCD queues) / www.r-ccs.riken.jp/en/fugaku/user-guide/
SVE / etc.

e Interactive, virtual tour:
www.r-ccs.riken.jp/en/fugaku/3d-models/
and
www.youtube.com/watch?v=f3cx4PGDGmg

e Usage potential far beyond just DL
framework =» backporting GPU codes
to HBM-based x86/Arm CPUs

< jens.domke@riken.jp >

https://www.riken.jp/en/research/labs/r-ccs/
https://bit.ly/3faax8v
http://www.riken.jp/en/careers/programs/index.html
http://www.r-ccs.riken.jp/en/about/careers/internship/
http://www.r-ccs.riken.jp/en/fugaku/user-guide/
https://www.r-ccs.riken.jp/en/fugaku/3d-models/
https://www.youtube.com/watch?v=f3cx4PGDGmg

