MocCUDA: Running CUDA Codes on Fugaku

Slides contrib.: W. Moses (MIT), I. Ivanov (TokyoTech)

Jens Domke, Dr. rer. nat. <jens.domke@riken.jp > High Performance Big Data Research Team, RIKEN R-CCS, Kobe, Japan

Initial DL4Fugaku team and Collaborators

significant assistance by Ikuo Miyoshi from Fujitsu limited

Technical Staff Mr. Kazuto ANDO

Researcher Dr. Keigo NITADORI

Visiting researcher Dr. Mohamed Wahib

Exploring and Merging Different Routes to O(100,000s) Nodes Deep Learning

 $\begin{array}{c|c} Stage 3 & Stage 4 \\ \hline \mathbf{A}_0, \mathbf{G}_1, \nabla E_1 & \mathbf{A}_0^{-1}, \mathbf{G}_1^{-1}, \nabla E_1 \\ \hline \mathbf{A}_1, \mathbf{G}_2, \nabla E_2 & \mathbf{A}_1^{-1}, \mathbf{G}_2^{-1}, \nabla E_2 \end{array}$

Data-parallel > Model-parallel

Data-paralle

 $A_1, G_2, \nabla E_2$ $A_2, G_3, \nabla E_3$

graph-based Non-intrusive partitioning strategy for large DNN models achieving superlinear scaling [1]

Deep tearning Distributed Execution Energy

Not Device Device Device

 A_1, G_2, ∇ Laver-wise distribution and Data-parallel Model-parallel (K-FAC) inverse-free further design accelerate K-FAC [5] A model-parallel 2nd-order method 102.4 G.PU.8 1024 GPUs 2048 512 Megatron-LM Turing-NLG UT Austin, UChicago, ANL (K-FAC) trains ResNet-50 on 1K GPUs Out-of-core distributed training (pure AIST, Koc U. Model-parallelism in 10 minutes [4] data-parallel) outperforming SoTA enables 3D CNN training TokyoTech, NVIDIA, RIKEN, AIST NLP models on 2K GPUs [2] on 2K GPUs with 64x AIST, Matsuoka-lab, RIKEN larger spatial size and Merging Theory^I and Practice better convergence [3] Inference (FP32) images/sec Matsuoka-lab, LLNL, LBL, RIKEN MocCUDA: Porting CUDA-based Same efficienc Porting CPU-based Deep Neural on Intel CPL Deep Neural Network Library to Engineering for Network Library to A64FX chip A64FX and (other CPU arch.) 150 Fujitsu, RIKEN, ARM Performance Foundation **RIKEN, Matsuoka-lab, AIST** batch size #OMP

[1] M. Fareed et al., "A Computational-Graph Partitioning Method for Training Memory-Constrained DNNs", Submitted to PPoPP21

ŧţ

[2] M. Wahib et al., "Scaling Distributed Deep Learning Workloads beyond the Memory Capacity with KARMA", ACM/IEEE SC20 (Supercomputing 2020)

[3] Y. Oyama et al., "The Case for Strong Scaling in Deep Learning: Training Large 3D CNNs with Hybrid Parallelism," arXiv e-prints, pp. 1-12, 2020.

[4] K. Osawa, et al., "Large-scale distributed second-order optimization using kronecker-factored approximate curvature for deep convolutional neural networks," Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2019-June, pp. 12351-12359, 2019.

[5] J. G. Pauloski, Z. Zhang, L. Huang, W. Xu, and I. T. Foster, "Convolutional Neural Network Training with Distributed K-FAC," arXiv e-prints, pp. 1-11, 2020.

Jens Domke

TEL OPS

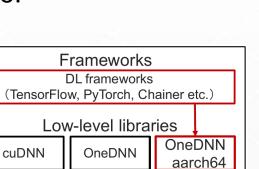
Ideal performance @FP32

Internal discussions (early spring '20)

- Prof. Matsuoka eye-opening remarks a long time ago:
 "A64FX is more like a GPU than a CPU"
- Brainstorming Alex & Wahib & myself

Jens Domke

- CUDA does gemm-based conv... why? -> Memory BW
- oneDNN focuses on direct conv. (gemm-based only "for debug")
- NNPACK / native CPU backends for "normal" CPUs all slow
- If A64FX *"is a GPU"*, then why don't we mimic its computation?
- Option A: use oneDNN's internal gemm-based conv
 - need rewrite of interface to pytorch, or within high-level API of oneDNN (3)
 - refactoring torch scripts still necessary; Amdahl's law issues still present ☺



Hardware

Intel CPU

A64FX

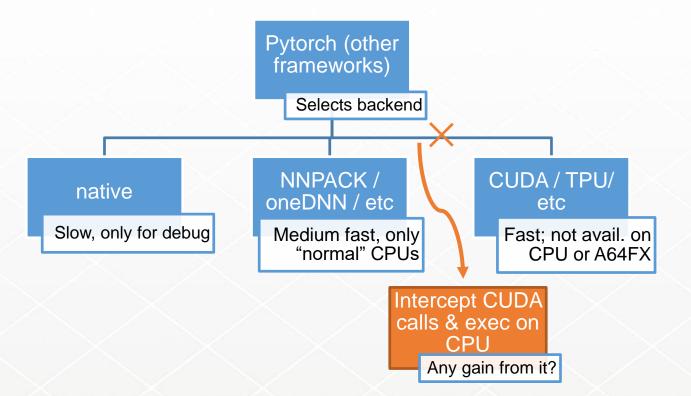
NVIDIA

GPU

oneDNN for pytorch (and TF, +others...)

- Disadvantages of Intel's oneDNN approach
 - Tedious to port to A64FX (years of engineering by Fujitsu)
 - GEMM-based convolution not exposed
 - Tuned for "normal" CPUs with assumption: Memory is slow
 - Pytorch scripts need to be modified (convert model/tensor with X.to_mkldnn())
 - Amdahl's law problem (maybe too much sequential pytorch stuff in betw. parallel DNNL sections)

Option B: can we replace CUDA RT & cuDNN?



Computer simula R-CCS create the future

Computer simulations

MocCUDA for x86 and A64FX (cuda-"native")

- Architecture (only functions implemented if called by pytorch):
 - Wrapper library for CUDA runtime → Easy ☺
 - Wrapper libs for cudnn (& cublas) → medium hard (& trivial), but no reference code available (hence, took more time)
 - Wrapper libs for native cuda kernels (<<<...>>> in torch's .cu files)
 → annoying, non-trivial coding / reverse engineering, but doable ⊗
 - Async work dispatch queues (cf. cuda streams) → use Apple's GCD
 - Finally: use **SSL2** for BLAS ops; use **Horovod** for MPI/multi-node
- Time: only 1-2 months of R&D without prior knowledge of CUDA programming or how to write DL kernels (bnorm, maxpool, conv, etc.)!

Can run Resnet50 (batchsize >= 2) with LD_PRELOAD=moccuda.so
 Jens Domke

Experimental MocCUDA Benchmarking

• Tests on Fugaku:

- Alex' github.com/undertherain/benchmarker/ (Infer.: conv2d layer; Train.: Resnet50 w/ synthetic img)
- Fujitsu's Resnet50 test_train.py script
- Horovod's synthetic Resnet50 benchmark
- Fujitsu's official pytorch v1.5 on Fugaku (FJ's fcc + oneDNN + SSL2)
- Self-compiled **Pytorch (v1.4) with CUDA** support (nvcc + clang13 + SSL2)
 - CUDA(4Arm)/cudnn "installed" in \$HOME from RPMs
 - +3 changes to prevent inline of some functions (\rightarrow not possible in v1.5 anymore)
- Execute test_train.py (10 epochs), and benchmarker (6 epoch) on A64FX, eg: for CMGs in (1, 2, 3, 4)
 - for OMP in (1, 2, ..., 64)
 - for batch_size in (1, 2, ..., 288)

test_train.py (--type cpu_nomkl | cpu_mkltensor | gpu) & eq. for benchmarker

Conv2d layer: Img/s (top) & Speedup (bottom)

- Conv2d can be implemented as im2col+gemm
- Higher is better
- Possible to run on 1-to-4 A64FX CMGs
- Native CPU backend usually worst performance
- MocCUDA can outperform oneDNN for large batch sizes (up to ~4x speedup possible)

200

150

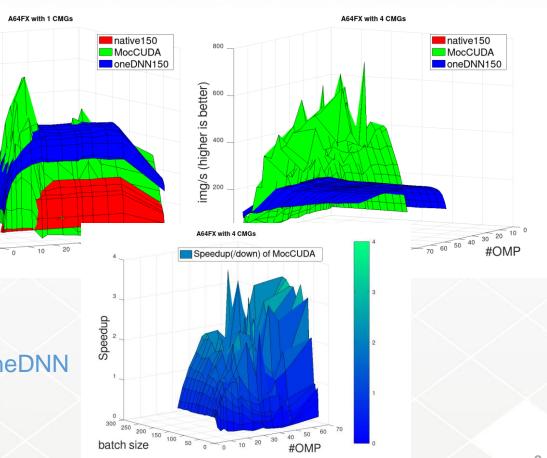
0

300

250 200 150 100

50

mg/s (higher is



Computer simulations

R-CCS create the future

Benchmarker: Resnet50 training

2.5

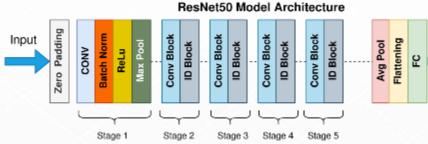
1.5

0.5

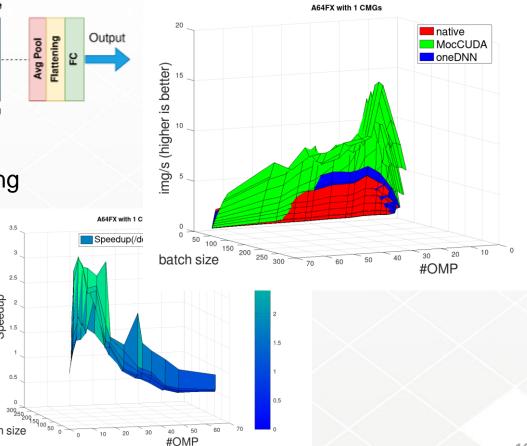
0

atch size

Speedup



- Full multi-layer resnet50 training run (forward and back 3.5 propagation) possible 3
- Higher is better
- MocCUDA outperforms oneDNN by up to 3x



Fujitsu's Resnet50 test train.py script

50

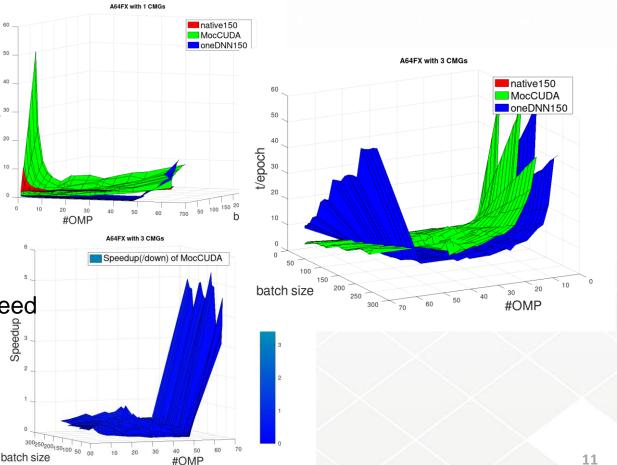
40

t/epoch ∞

20

10

- Lower is better
- Native slow; not scaling with batch size (OOM issues)
- oneDNN big problem with #OMP > #cores
- MocCUDA almost competitive
 - small #OMP: ~1/2 speed
 - #OMP ~= #cores: 5%-20% slower
- >5x speedup for #OMP > #coreJens Domke



Horovod's synthetic Resnet50 benchmark

A64FX with 2 MPI Ranks • Higher is better 60 native150 MocCUDA Left: 2 ranks on 50 oneDNN150 1 node; Right: 40 scaling #MPI img/sec 30 ranks with fixed #OMP=12 20 12x A64FX Fugaku nodes native150 Native slow 10 MocCUDA oneDNN150 oneDNN best. 0 20 but with **odd** 40 60 batch size 10 5 80 15 20 #OMP performance **behavior** (#OMP=1 best; >1 decreasing) 100 0 MocCUDA close to oneDNN with 12 cores per MPI rank / CMG batch size

#ranks

50

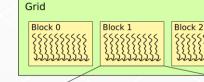
Primary remaining issue: native CUDA kernels

- Pytorch has various tensor operations implemented in native cuda (add, mul, threshold, softmax, ... more complex ops)
- Number is reducing over time
 - → more and more move to libcudnn, libcublas, libcufft,
- Number will likely _not_ decrease to 0
 some fn not performance-relevant enough to migrate
- → Collaboration on automatic Cuda2OpenMP translation/compilation
- Prior art exists (eg. GPU Ocelot, ...) but is outdated
- Approach A: LLVM-IR (collab. w/ Ivan R. Ivanov @TokyoTech)
- Approach B: LLVM-MLIR (collab. w/ William S. Moses @MIT)

Option A: LLVM-IR (I. Ivanov @TokyoTech)

- CUDA execution model:
 - Kernels exec. in blocks in grids
 - Threads in blocks run in parallel
 - No guarantee about the order of blocks or parallelism of blocks
- In theory easily mapped to
 6-way nested loop + OMP
 - GPU thread ?= CPU thread
 → oversubscribes CPU
 → bad cache access ☺
 - Parallelize over blocks?
 → GPU barriers... ☺

Jens Domke



entry

int i = threadIdx.x:

C[i] = A[i] + B[i];

Execution of a block on the GPU

apu thread idx 0 1 2 3 4 5 6 7

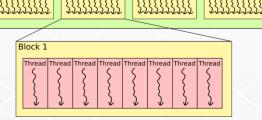
entry

barrier

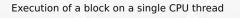
barrier

exit

global void VecAdd(float* A, float* B, float* C)



Kernel execution structure



Block n

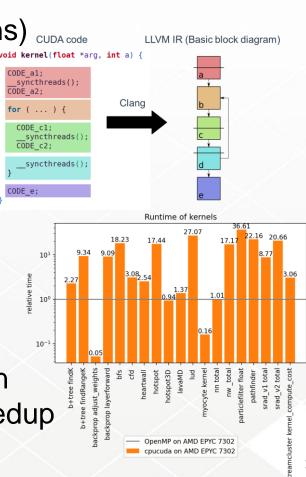
...

Code transformation: continuation kernels

- Generate continuation kernels (functions)
- Live variable analysis to find state (variables) necessary to preserve
- Done on LLVM IR level
- $f \xrightarrow[a^2]{a^2} f 0 \xrightarrow[a^2]{a^2} f 0 \xrightarrow[a^2]{a^2} cont: f1 \xrightarrow[a^2]{a^2} f 1 \xrightarrow[a^2]{a^2} cont: f2 \xrightarrow[a^2]{a^2} cont: f2$

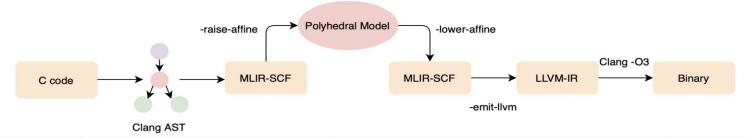
Evaluation

- Rodinia (has OpenMP & CUDA implementations of the same problem
- Avg. *cpucuda* runtime 2.5x slower than native OpenMP (ranging from 20x speedup to 37x slowdown



Option B: LLVM-MLIR (W. Moses @MIT)

• Polygeist compilation flow (github.com/wsmoses/Polygeist)



- Generic C/C++ frontend generates "standard" MLIR (multi-level interm. Rep.)
- Raising transformations for transforming "standard"→polyhedral MLIR (affine)
- Embedding of existing polyhedral tools (Pluto, CLooG) into MLIR
- Novel transformations and optimizations (statement splitting, reduction detection, etc) that rely on high-level compiler representation
- End-to-end evaluation of standard polyhedral benchmarks (Polybench)

Use Polygeist to translate CUDA \rightarrow OpenMP

Computer simulations create the future R-CCS

 \rightarrow

- Parallelize within blocks and first-class representation of parallelism
 - Maintain GPU parallelism in a form understandable to the compiler
 - Enables optimization between caller and kernel

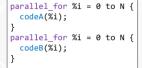
_____device____int sum(int* in, int n); global void normalize(int *out, int *in, int n) { int tid = threadIdx.x: if (tid < n)out[tid] = in[tid] / sum(in, n); void launch(int* out, int* in, int n) {

normalize<<<nblocks, nthreads>>>(out, in, n);

%arg2: 132) { %c1 = arith.constant 1 : index %c0 = arith.constant 0 : index %sum = call @ Z3sumPii(%arg1, %arg2) scf.parallel (%arg3) = (%c0) to (%arg2) step (%c1) { %2 = memref.load %arg1[%arg3] %4 = arith.divsi %2, %sum : i32 memref.store %4, %arg0[%arg3]

func private @_Z3sumPii(memref<?xi32>, i32) -> i32

- Remaining issue again: Synchronization Lowering
 - Efficiently lower a top-level sync by distributing the *parallel* for loop around the sync



- Store registers or **re-compute values** which are required in 2nd loop
- parallel for %i = 0 to N { parallel for %i = 0 to N { parallel for %i = 0 to N { codeA(%i); codeA(%i): codeA(%i); Sync. within control flow parallel for %i = 0 to N { codeA(%i); parallel_for %i = 0 to N { for %j = ... { parallel for %i = 0 to N { parallel for %i = 0 to N { (for, if, while, etc.) can be codeB1(%i, %j); codeB1(%i, %j); codeB1(%i, %j); codeB1(%i, %j); sync threads; sync threads; sync_threads; lowered by splitting and codeB2(%i, %j); codeB2(%i, %j); parallel for %i = 0 to N { codeB2(%i, %j); codeB2(%i, %j); codeC(%i); and interchanging loops parallel for %i = 0 to N { parallel for %i = 0 to N { codeC(%i); codeC(%i); parallel for %i = 0 to N { codeC(%i); Jens Domke

Summary and Job/Collaboration Opportunities

- Advantages of MocCUDA & LLVM-IR:
 - Full control over SW stack; tune as we like (algos/code) w/o Intel
 - CUDA impl. (torch/etc.) implicitly supports async dispatch -> no Amdahl's law issues
 - Implicit support for other DL frameworks (incl. those without oneDNN support)
 - Easily integrate diff. precisions / kernel fusion (analyze GCD queues) / SVE / etc.
 - Usage potential far beyond just DL framework → backporting GPU codes to HBM-based x86/Arm CPUs

- Collaborations and Job opportunities:
 - Our research teams and open positions: <u>https://www.riken.jp/en/research/labs/r-ccs/</u> and <u>https://bit.ly/3faax8v</u>
- Internship/fellowship (Bachelor→PhD):
 - www.riken.jp/en/careers/programs/index.html
 - www.r-ccs.riken.jp/en/about/careers/internship/
- Supercomputer Fugaku:
 - Apply for node-hours: <u>www.r-ccs.riken.jp/en/fugaku/user-guide/</u>
 - Interactive, virtual tour: <u>www.r-ccs.riken.jp/en/fugaku/3d-models/</u> and <u>www.youtube.com/watch?v=f3cx4PGDGmg</u>

< jens.domke@riken.jp >