
MocCUDA: Running CUDA

Codes on Fugaku
Slides contrib.: W. Moses (MIT), I. Ivanov (TokyoTech)

Jens Domke 2

Initial DL4Fugaku team and Collaborators

Jens Domke 3

Jens Domke

Internal discussions (early spring ‘20)

 Prof. Matsuoka eye-opening remarks a long time ago:

“A64FX is more like a GPU than a CPU”

 Brainstorming Alex & Wahib & myself

 CUDA does gemm-based conv… why? -> Memory BW

 oneDNN focuses on direct conv. (gemm-based only “for debug”)

 NNPACK / native CPU backends for “normal” CPUs all slow

 If A64FX “is a GPU”, then why don’t we mimic its computation?

 Option A: use oneDNN’s internal gemm-based conv

 need rewrite of interface to pytorch, or within high-level API of oneDNN 

 refactoring torch scripts still necessary; Amdahl’s law issues still present 
4

Jens Domke

oneDNN for pytorch (and TF, +others…)

 Disadvantages of Intel’s oneDNN approach

 Tedious to port to A64FX (years of engineering by Fujitsu)

 GEMM-based convolution not exposed

 Tuned for “normal” CPUs with

assumption: Memory is slow

 Pytorch scripts need to be

modified (convert model/tensor

with X.to_mkldnn())

 Amdahl’s law problem (maybe

too much sequential pytorch stuff

in betw. parallel DNNL sections)

5

Jens Domke

Option B: can we replace CUDA RT & cuDNN?

6

Intercept CUDA
calls & exec on

CPU
Any gain from it?

Pytorch (other
frameworks)

Selects backend

native

Slow, only for debug

NNPACK /
oneDNN / etc

Medium fast, only
“normal” CPUs

CUDA / TPU/
etc

Fast; not avail. on
CPU or A64FX

Jens Domke

MocCUDA for x86 and A64FX (cuda-”native”)

 Architecture (only functions implemented if called by pytorch):

 Wrapper library for CUDA runtime  Easy 

 Wrapper libs for cudnn (& cublas)  medium hard (& trivial), but no

reference code available (hence, took more time)

 Wrapper libs for native cuda kernels (<<<…>>> in torch’s .cu files)

 annoying, non-trivial coding / reverse engineering, but doable 

 Async work dispatch queues (cf. cuda streams)  use Apple’s GCD

 Finally: use SSL2 for BLAS ops; use Horovod for MPI/multi-node

 Time: only 1-2 months of R&D without prior knowledge of CUDA

programming or how to write DL kernels (bnorm, maxpool, conv, etc.)!

 Can run Resnet50 (batchsize >= 2) with LD_PRELOAD=moccuda.so
7

Jens Domke

Experimental MocCUDA Benchmarking

 Tests on Fugaku:

 Alex’ github.com/undertherain/benchmarker/ (Infer.: conv2d layer; Train.: Resnet50 w/ synthetic img)

 Fujitsu’s Resnet50 test_train.py script

 Horovod’s synthetic Resnet50 benchmark

 Fujitsu’s official pytorch v1.5 on Fugaku (FJ’s fcc + oneDNN + SSL2)

 Self-compiled Pytorch (v1.4) with CUDA support (nvcc + clang13 + SSL2)

 CUDA(4Arm)/cudnn “installed” in $HOME from RPMs

 +3 changes to prevent inline of some functions ( not possible in v1.5 anymore)

 Execute test_train.py (10 epochs), and benchmarker (6 epoch) on A64FX, eg:
for CMGs in (1, 2, 3, 4)

for OMP in (1, 2, …, 64)

for batch_size in (1, 2, …, 288)

test_train.py (--type cpu_nomkl | cpu_mkltensor | gpu) & eq. for benchmarker
8

https://github.com/undertherain/benchmarker/

Jens Domke

Conv2d layer: Img/s (top) & Speedup (bottom)

9

 Conv2d can be

implemented as

im2col+gemm

 Higher is better

 Possible to

run on 1-to-4

A64FX CMGs

 Native CPU

backend usually

worst performance

 MocCUDA can outperform oneDNN

for large batch sizes

(up to ~4x speedup possible)

Jens Domke

Benchmarker: Resnet50 training

10

 Full multi-layer resnet50 training

run (forward and back

propagation) possible

 Higher is better

 MocCUDA outperforms

oneDNN by up to 3x

Jens Domke

Fujitsu’s Resnet50 test_train.py script

11

 Lower is better

 Native slow; not

scaling with batch

size (OOM issues)

 oneDNN big problem

with #OMP > #cores

 MocCUDA almost

competitive

 small #OMP: ~1/2 speed

 #OMP ~= #cores:

5%-20% slower

 >5x speedup for

#OMP > #core

Jens Domke

Horovod’s synthetic Resnet50 benchmark

12

 Higher is better

 Left: 2 ranks on

1 node; Right:

scaling #MPI

ranks with fixed

#OMP=12

 Native slow

 oneDNN best,

but with odd

performance

behavior (#OMP=1 best; >1 decreasing)

 MocCUDA close to oneDNN with 12 cores

per MPI rank / CMG

Jens Domke

Primary remaining issue: native CUDA kernels

 Pytorch has various tensor operations implemented in native cuda

(add, mul, threshold, softmax, … more complex ops)

 Number is reducing over time

 more and more move to libcudnn, libcublas, libcufft, ….

 Number will likely _not_ decrease to 0

 some fn not performance-relevant enough to migrate

 Collaboration on automatic Cuda2OpenMP translation/compilation

 Prior art exists (eg. GPU Ocelot, …) but is outdated

 Approach A: LLVM-IR (collab. w/ Ivan R. Ivanov @TokyoTech)

 Approach B: LLVM-MLIR (collab. w/ William S. Moses @MIT)

13

Jens Domke 14

Option A: LLVM-IR (I. Ivanov @TokyoTech)

 CUDA execution model:

 Kernels exec. in blocks in grids

 Threads in blocks run in parallel

 No guarantee about the order of blocks

or parallelism of blocks

 In theory easily mapped to

6-way nested loop + OMP

 GPU thread ?= CPU thread

 oversubscribes CPU

 bad cache access 

 Parallelize over blocks? 

 GPU barriers… 

Jens Domke 15

Code transformation: continuation kernels

 Generate continuation kernels (functions)

 Live variable analysis to find state

(variables) necessary to preserve

 Done on LLVM IR level

 Evaluation

 Rodinia (has OpenMP & CUDA

implementations of the same problem

 Avg. cpucuda runtime 2.5x slower than

native OpenMP (ranging from 20x speedup

to 37x slowdown

Jens Domke 16

Option B: LLVM-MLIR (W. Moses @MIT)

 Polygeist compilation flow (github.com/wsmoses/Polygeist)

 Generic C/C++ frontend generates “standard” MLIR (multi-level interm. Rep.)

 Raising transformations for transforming “standard”polyhedral MLIR (affine)

 Embedding of existing polyhedral tools (Pluto, CLooG) into MLIR

 Novel transformations and optimizations (statement splitting, reduction

detection, etc) that rely on high-level compiler representation

 End-to-end evaluation of standard polyhedral benchmarks (Polybench)

https://github.com/wsmoses/Polygeist

Jens Domke 17

Use Polygeist to translate CUDAOpenMP

 Parallelize within blocks and first-class representation of parallelism

 Maintain GPU parallelism in a form understandable to the compiler

 Enables optimization between caller and kernel



 Remaining issue again: Synchronization Lowering

 Efficiently lower a top-level sync by distributing 

the parallel_for loop around the sync

 Store registers or re-compute values which are required in 2nd loop

 Sync. within control flow

(for, if, while, etc.) can be   

lowered by splitting and

and interchanging loops

Jens Domke 18

Summary and Job/Collaboration Opportunities
 Advantages of MocCUDA & LLVM-IR:

 Full control over SW stack; tune as

we like (algos/code) w/o Intel

 CUDA impl. (torch/etc.) implicitly

supports async dispatch -> no

Amdahl’s law issues

 Implicit support for other DL

frameworks (incl. those without

oneDNN support)

 Easily integrate diff. precisions /

kernel fusion (analyze GCD queues) /

SVE / etc.

 Usage potential far beyond just DL

framework  backporting GPU codes

to HBM-based x86/Arm CPUs

 Collaborations and Job opportunities:

 Our research teams and open positions:
https://www.riken.jp/en/research/labs/r-ccs/

and
https://bit.ly/3faax8v

 Internship/fellowship (BachelorPhD):

 www.riken.jp/en/careers/programs/index.html

 www.r-ccs.riken.jp/en/about/careers/internship/

 Supercomputer Fugaku:

 Apply for node-hours:
www.r-ccs.riken.jp/en/fugaku/user-guide/

 Interactive, virtual tour:
www.r-ccs.riken.jp/en/fugaku/3d-models/

and
www.youtube.com/watch?v=f3cx4PGDGmg

https://www.riken.jp/en/research/labs/r-ccs/
https://bit.ly/3faax8v
http://www.riken.jp/en/careers/programs/index.html
http://www.r-ccs.riken.jp/en/about/careers/internship/
http://www.r-ccs.riken.jp/en/fugaku/user-guide/
https://www.r-ccs.riken.jp/en/fugaku/3d-models/
https://www.youtube.com/watch?v=f3cx4PGDGmg

