
MocCUDA: Running CUDA

Codes on Fugaku
Slides contrib.: W. Moses (MIT), I. Ivanov (TokyoTech)

Jens Domke 2

Initial DL4Fugaku team and Collaborators

Jens Domke 3

Jens Domke

Internal discussions (early spring ‘20)

 Prof. Matsuoka eye-opening remarks a long time ago:

“A64FX is more like a GPU than a CPU”

 Brainstorming Alex & Wahib & myself

 CUDA does gemm-based conv… why? -> Memory BW

 oneDNN focuses on direct conv. (gemm-based only “for debug”)

 NNPACK / native CPU backends for “normal” CPUs all slow

 If A64FX “is a GPU”, then why don’t we mimic its computation?

 Option A: use oneDNN’s internal gemm-based conv

 need rewrite of interface to pytorch, or within high-level API of oneDNN

 refactoring torch scripts still necessary; Amdahl’s law issues still present
4

Jens Domke

oneDNN for pytorch (and TF, +others…)

 Disadvantages of Intel’s oneDNN approach

 Tedious to port to A64FX (years of engineering by Fujitsu)

 GEMM-based convolution not exposed

 Tuned for “normal” CPUs with

assumption: Memory is slow

 Pytorch scripts need to be

modified (convert model/tensor

with X.to_mkldnn())

 Amdahl’s law problem (maybe

too much sequential pytorch stuff

in betw. parallel DNNL sections)

5

Jens Domke

Option B: can we replace CUDA RT & cuDNN?

6

Intercept CUDA
calls & exec on

CPU
Any gain from it?

Pytorch (other
frameworks)

Selects backend

native

Slow, only for debug

NNPACK /
oneDNN / etc

Medium fast, only
“normal” CPUs

CUDA / TPU/
etc

Fast; not avail. on
CPU or A64FX

Jens Domke

MocCUDA for x86 and A64FX (cuda-”native”)

 Architecture (only functions implemented if called by pytorch):

 Wrapper library for CUDA runtime Easy

 Wrapper libs for cudnn (& cublas) medium hard (& trivial), but no

reference code available (hence, took more time)

 Wrapper libs for native cuda kernels (<<<…>>> in torch’s .cu files)

 annoying, non-trivial coding / reverse engineering, but doable

 Async work dispatch queues (cf. cuda streams) use Apple’s GCD

 Finally: use SSL2 for BLAS ops; use Horovod for MPI/multi-node

 Time: only 1-2 months of R&D without prior knowledge of CUDA

programming or how to write DL kernels (bnorm, maxpool, conv, etc.)!

 Can run Resnet50 (batchsize >= 2) with LD_PRELOAD=moccuda.so
7

Jens Domke

Experimental MocCUDA Benchmarking

 Tests on Fugaku:

 Alex’ github.com/undertherain/benchmarker/ (Infer.: conv2d layer; Train.: Resnet50 w/ synthetic img)

 Fujitsu’s Resnet50 test_train.py script

 Horovod’s synthetic Resnet50 benchmark

 Fujitsu’s official pytorch v1.5 on Fugaku (FJ’s fcc + oneDNN + SSL2)

 Self-compiled Pytorch (v1.4) with CUDA support (nvcc + clang13 + SSL2)

 CUDA(4Arm)/cudnn “installed” in $HOME from RPMs

 +3 changes to prevent inline of some functions (not possible in v1.5 anymore)

 Execute test_train.py (10 epochs), and benchmarker (6 epoch) on A64FX, eg:
for CMGs in (1, 2, 3, 4)

for OMP in (1, 2, …, 64)

for batch_size in (1, 2, …, 288)

test_train.py (--type cpu_nomkl | cpu_mkltensor | gpu) & eq. for benchmarker
8

https://github.com/undertherain/benchmarker/

Jens Domke

Conv2d layer: Img/s (top) & Speedup (bottom)

9

 Conv2d can be

implemented as

im2col+gemm

 Higher is better

 Possible to

run on 1-to-4

A64FX CMGs

 Native CPU

backend usually

worst performance

 MocCUDA can outperform oneDNN

for large batch sizes

(up to ~4x speedup possible)

Jens Domke

Benchmarker: Resnet50 training

10

 Full multi-layer resnet50 training

run (forward and back

propagation) possible

 Higher is better

 MocCUDA outperforms

oneDNN by up to 3x

Jens Domke

Fujitsu’s Resnet50 test_train.py script

11

 Lower is better

 Native slow; not

scaling with batch

size (OOM issues)

 oneDNN big problem

with #OMP > #cores

 MocCUDA almost

competitive

 small #OMP: ~1/2 speed

 #OMP ~= #cores:

5%-20% slower

 >5x speedup for

#OMP > #core

Jens Domke

Horovod’s synthetic Resnet50 benchmark

12

 Higher is better

 Left: 2 ranks on

1 node; Right:

scaling #MPI

ranks with fixed

#OMP=12

 Native slow

 oneDNN best,

but with odd

performance

behavior (#OMP=1 best; >1 decreasing)

 MocCUDA close to oneDNN with 12 cores

per MPI rank / CMG

Jens Domke

Primary remaining issue: native CUDA kernels

 Pytorch has various tensor operations implemented in native cuda

(add, mul, threshold, softmax, … more complex ops)

 Number is reducing over time

 more and more move to libcudnn, libcublas, libcufft, ….

 Number will likely _not_ decrease to 0

 some fn not performance-relevant enough to migrate

 Collaboration on automatic Cuda2OpenMP translation/compilation

 Prior art exists (eg. GPU Ocelot, …) but is outdated

 Approach A: LLVM-IR (collab. w/ Ivan R. Ivanov @TokyoTech)

 Approach B: LLVM-MLIR (collab. w/ William S. Moses @MIT)

13

Jens Domke 14

Option A: LLVM-IR (I. Ivanov @TokyoTech)

 CUDA execution model:

 Kernels exec. in blocks in grids

 Threads in blocks run in parallel

 No guarantee about the order of blocks

or parallelism of blocks

 In theory easily mapped to

6-way nested loop + OMP

 GPU thread ?= CPU thread

 oversubscribes CPU

 bad cache access

 Parallelize over blocks?

 GPU barriers…

Jens Domke 15

Code transformation: continuation kernels

 Generate continuation kernels (functions)

 Live variable analysis to find state

(variables) necessary to preserve

 Done on LLVM IR level

 Evaluation

 Rodinia (has OpenMP & CUDA

implementations of the same problem

 Avg. cpucuda runtime 2.5x slower than

native OpenMP (ranging from 20x speedup

to 37x slowdown

Jens Domke 16

Option B: LLVM-MLIR (W. Moses @MIT)

 Polygeist compilation flow (github.com/wsmoses/Polygeist)

 Generic C/C++ frontend generates “standard” MLIR (multi-level interm. Rep.)

 Raising transformations for transforming “standard”polyhedral MLIR (affine)

 Embedding of existing polyhedral tools (Pluto, CLooG) into MLIR

 Novel transformations and optimizations (statement splitting, reduction

detection, etc) that rely on high-level compiler representation

 End-to-end evaluation of standard polyhedral benchmarks (Polybench)

https://github.com/wsmoses/Polygeist

Jens Domke 17

Use Polygeist to translate CUDAOpenMP

 Parallelize within blocks and first-class representation of parallelism

 Maintain GPU parallelism in a form understandable to the compiler

 Enables optimization between caller and kernel

 Remaining issue again: Synchronization Lowering

 Efficiently lower a top-level sync by distributing

the parallel_for loop around the sync

 Store registers or re-compute values which are required in 2nd loop

 Sync. within control flow

(for, if, while, etc.) can be

lowered by splitting and

and interchanging loops

Jens Domke 18

Summary and Job/Collaboration Opportunities
 Advantages of MocCUDA & LLVM-IR:

 Full control over SW stack; tune as

we like (algos/code) w/o Intel

 CUDA impl. (torch/etc.) implicitly

supports async dispatch -> no

Amdahl’s law issues

 Implicit support for other DL

frameworks (incl. those without

oneDNN support)

 Easily integrate diff. precisions /

kernel fusion (analyze GCD queues) /

SVE / etc.

 Usage potential far beyond just DL

framework backporting GPU codes

to HBM-based x86/Arm CPUs

 Collaborations and Job opportunities:

 Our research teams and open positions:
https://www.riken.jp/en/research/labs/r-ccs/

and
https://bit.ly/3faax8v

 Internship/fellowship (BachelorPhD):

 www.riken.jp/en/careers/programs/index.html

 www.r-ccs.riken.jp/en/about/careers/internship/

 Supercomputer Fugaku:

 Apply for node-hours:
www.r-ccs.riken.jp/en/fugaku/user-guide/

 Interactive, virtual tour:
www.r-ccs.riken.jp/en/fugaku/3d-models/

and
www.youtube.com/watch?v=f3cx4PGDGmg

https://www.riken.jp/en/research/labs/r-ccs/
https://bit.ly/3faax8v
http://www.riken.jp/en/careers/programs/index.html
http://www.r-ccs.riken.jp/en/about/careers/internship/
http://www.r-ccs.riken.jp/en/fugaku/user-guide/
https://www.r-ccs.riken.jp/en/fugaku/3d-models/
https://www.youtube.com/watch?v=f3cx4PGDGmg

