
Matrix Engines for HPC:
A Paragon of Performance

or Grasping at Straws?

Jens Domke, Emil Vatai, Aleksandr Drozd, Peng Chen,
Yosuke Oyama, Lingqi Zhang, Shweta Salaria, Daichi Mukunoki,
Artur Podobas, Mohamed Wahib, Satoshi Matsuoka

(Collab. betw. researcher of RIKEN R-CCS, AIST, Tokyo Tech, and KTH)

[1]

Jens Domke

Outline

2

 Motivation for Matrix Engines

 GEMM utilization in…

 Historical Data of the K Computer

 Software Libraries and Dependencies

 Traditional and emerging HPC Workloads

 Discussion

 Extrapolating a few (realistic?) Scenarios

 Pros & Cons of adapting MEs

 Conclusion

Jens Domke

Motivation – Tensor Cores for Deep Learning

3

 Deep Learning is driving commercial availability of matrix-multiplication units, as well

as custom silicon (e.g., NVIDIA Tesla, IBM Power10, Intel Sapphire Rapids, Google

TPUs, etc.)

 Motivation:

 More ME for DL

 Resulting Research Questions for HPC field:

 Q1: How much do HPC workloads actually depend on BLAS / GEMM operations?

 Q2: How well do our DL workloads utilize existing matrix engines?

 Q3: Based on Q1/Q2, how much practical benefit can we expect for HPC centers?

 Q4: Should the HPC community actively invest in ME units?

 Saves power, consumes dark

silicon

 Faster DL training / inference

 Can be used to accelerate other

linear algebra (e.g., BLAS3)

Jens Domke

Motivation – TCs are escaping GPUs

4

 Compute in DL, for now, is formulated as dense matrix operations

(i.e., convolution as im2col+gemm)

 Vendors reaction to DL workloads Matrix Engines (MEs)

 Matrix engines are dedicated matrix-matrix multiply units (e.g.,

implemented via systolic arrays)

 TCs and MEs (various sizes) yield perf. improvements for low-precision ops

Overview of existing and emerging general-purpose and AI architectures that

leverage matrix engines to accelerate computations

Jens Domke

Motivation – Scalar Vector Matrix?

5

 Vectors units can efficiently

increase performance and

energy efficiency
(2.3x higher energy eff. w/ AVX2)

 Going from vector to matrix

units seems like a natural

extension (clear runtime and

power benefit for FP16 GEMM)

 Counter-question: Are MEs

really what we should be spending

our silicon on, given that Moore’s

law is dying out?

Energy-eff. of Vector Extensions on

a Intel Xeon CPU (measured with PCM)

Power consumption evaluation of GPU

cores and TCs on a single Tesla V100 GPU

Jens Domke

GEMM in… Historical Data of the K Computer

6

 RIKEN’s operations team collected light job statistics

 Runtime, binary names, symbol table of main binary (via nm), etc.

 Recording period of April ’18 to March ’19

 487,563 scientific applications consuming 543 million node-hours

 For 96% of these we have nm data*

 Analysis

 Binary/jobs with GEMM calls in them: 277,258,182 node-hours (53.4%)

 Amount of GEMM within each job unknown

 Best case (all GEMM; infinitely fast MEs): ≈ Τ𝟏 𝟐 node-hours (Amdahl’s law)

(*remark: nm from external libs missing, but Fujitsu’s mathlib SSL2 usually

linked statically; and functions are included on as-needed basis)

Jens Domke

GEMM in… Software Lib and Dependencies

7

 Spack: popular package manager for 4371 science/HPC codes

 Provides numerous math libraries (Atlas, BLIS, Eigen, MKL, etc.)

and tracks package dependencies

 We identified all libraries which provide dense linear algebra functions

 We create dependency trees to also catch indirect dependency on BLAS

 Analysis

 14 math libs

 226 (or 9%) directly

and 1311 indirectly

dependent on “BLAS”

 Best case: 51% of

packages can be fully/partially enhanced by MEs

Dependency Analysis of Dense Linear Algebra Libs

for Spack (w/ & w/o Python and R sub-packages)

Jens Domke

GEMM in… Deep Learning Workloads

8

 Utilize benchmarker: https://github.com/undertherain/benchmarker/

 Examining different, common AI models and kernels

 Execute proxy workloads (similar characteristic to MLperf**)

 Collect metrics via (py)NVML and NVIDIA’s nvprof on single server

 Speedup: FP32 (non-TC) vs. mixed-precision training (w/ TCs)*

(*reason: limited control given to user by pytorch & cuDNN;

**1. MLPerf is the most widely used benchmark suite for AI/ML [www.mlperf.org])

https://github.com/undertherain/benchmarker/

Jens Domke

GEMM in… Deep Learning Workloads

9

 How much does DL generally benefits from MEs?

 Identifying TC kernels from

profiling on Tesla V100

 Avg. 2x (eg. ConvNets) and

up to 4x (for Transformers)

 Not as high as GEMM (7.6x)

 Yet substantial speedup

(justifies TCs)

 Recall: speedup partially result

of lower precision and MEs

 Note: assuming AI/ML loads cont. to be formulated as dense matrix ops

Throughput Improvement from FP32 to Mixed Prec. + TCs
%TC: percentage of time on TCs (relative to total time); %TC comp: comp. time s

pent on TCs excl. data move.; and %Mem: time for data mov. between host->dev

Jens Domke

GEMM in… Deep Learning Workloads

10

…not only speedup, but:

 Mixed precision (TCs) yields

> 2x improvement in energy

efficiency (over FP32)

 Before, architectural

improvement for FP32-based

Resnet50 were marginal

(only 0.8 1.3 images/Joule

from GTX1060 to V100) Energy-efficiency of ResNet50 training

Jens Domke

GEMM in… 77 traditional HPC Workloads

11

 TOP500 benchmarks: HPL and HPCG (Intel’s version)

 Used by community for world-wide supercomputer ranking

 Exascale Computing Project (ECP) Proxy Applications

 Used for procurement of exascale systems by HPC centers in USA

 Version 1.0 contains 12 workloads (we excluded CANDLE)

 RIKEN CCS’ Fiber Miniapp Suite

 8 proxy apps used in procurement of Supercomputer Fugaku

 Represent the priority areas of the Japanese government

 SPEC Benchmarks (CPU 2017 V1.1 & OMP 2012 V1.1 & MPI 2007 V2.0.1)

 Widely accepted benchmark set for industry and HPC vendors

Jens Domke

GEMM in… 77 traditional HPC Workloads

12

Jens Domke

GEMM in… 77 traditional HPC Workloads

13

Measurement methodology to identify GEMM kernels

 Created a Score-P library wrapper for all dense compute functions

of MKL ((C)BLAS, PBLAS, ScaLAPACK, etc.)

 TOP500, ECP, and Fiber proxies:

 Kernel isolation; compiler settings; input selection acc. to previous work [1]

 Link against Score-P wrapper and manual instrument all source-code
location referring to GEMM or Fortran’s matmul intrinsic

 SPEC benchmarks (unfortunately all external libraries striped out):

 Prioritize GNU compilers (with –O3 –march=native) and mtrain input set

 Find compute-intensive kernels with Intel Advisor Manually inspect

598 source code locations instrument all GEMM ops (via Score-P)

[1] J. Domke et al., “Double-precision FPUs in High-Performance Computing: an Embarrassment of Riches?” in IPDPS19, 2019.

Jens Domke

GEMM in… 77 traditional HPC Workloads

14

 HPL: highest GEMM util. with 76.81% and 0.14% in other BLAS calls

 Other BMs performing GEMM: Laghos (41.24%), NTChem (25.78%),

Nekbone (4.58%), and SPEC OMP’s botsspar (18.9%) and bt331 (14.16%),

and SPEC MPI’s milc & dmilc (40.16% & 35.57%) and socorro (9.52%)

 Non-GEMM BLAS & LAPACK even less utilized: highest in mVMC (31%)

 Assume equal distribution: only 3.5% spent in GEMM (cf. ≈12.5d per year)

GEMM, BLAS (non-GEMM functions), and (Sca)LAPACK utilization across 77 HPC benchmarks
Remark: non-GEMM & (Sca)LAPACK kernels not profiled for SPEC BMs

Jens Domke

What if… we have/had MEs?

15

 Time for thought experiment!, we have/know:

 Breakdown of GEMM vs. non-GEMM cycles (last slide)

 Node-hours per science domain for RIKEN [1] and ANL [2] and hypothetical

future HPC system with 20% AI cycles

 Methodology:

 Select one application (of our 77) with highest GEMM percentage for each

science domain (material science, chemistry, biology, etc.)

 Assume app rep. all cycles spent per domain (assume 10% for “other”)

 No MEs≅100% node-hours; assume various ME speedup conf. (2, … ,∞)

 Ignore other inefficiencies: downtime, I/O, init/post-proc., under-utilization, etc.

 Estimate reduction in node-hours per system / HPC site
[1] AICS, “K computer Annual Report 2016-17,” RIKEN Advanced Institute for Computational Science, Tech Report.

[2] J. Collins et al., “2016 Annual Report - Argonne Leadership Computing Facility,” Argonne National Laboratory, TR: ANL/ALCF-17/1.

Jens Domke

Node hour reduction by utilizing hypothetical ME

What if… we have/had MEs?

16

Node-hour reduction extrapolation

 Future system w/ 10% equal

distribution per science domain

and 20% AI/DL/ML

(realistic for convergence

of HPC and AI?)

 Under ideal conditions

w/ 4x ME speedup*:

 5.3% on K & 11.5% @ANL

 23.8% future system

 Please, do your own extrapolation based on your workloads

(*remark: 2-4x realistic w/o precision reduction as shown earlier)

Jens Domke

What if… we only have low-precision MEs?

17

 Assuming: avail. MEs without support FP64 ops

 Are those low-precision

MEs still valuable?

 Using Osaki scheme [1] to

“emulate” higher precision

numerics using low-precision

arithmetics by separately calc.

of mantissa and exponent

 Number of splits depends on

required accuracy and value

range of inputs [2] GEMM with Ozaki scheme (image from [2])

[1] K. Ozaki et al., “Error-free transformations of matrix multiplication by using fast routines of matrix multiplication & its applications,” in

Numer. Algor., 2012.

[2] D. Mukunoki et al., “Accurate BLAS Implementations:OzBLASand BLAS-DOT2,” in LSPANC 2020 January, 2020

Jens Domke

What if… we only have low-precision MEs?

18

 Experiments on a NVIDIA Tesla V100

 Comparing cuBLAS routines and emulated GEMM using TCs

 NVML used for
W measurement

 [S|D]GEMM-TC

can’t outperform

cuBLAS on V100

 …but can mitigate

the lack of FP32

FP64 MEs with

reasonable perf. loss
(remark: DGEMM-TC outperforms cublasDgemm on a NVIDIA Titan RTX due to

limited FP64 units)

Performance of cuBLAS routines vs. GEMM-TC

(software emulation using TCs; m = n = k = 8192)

Jens Domke

What if…? Opportunities of MEs in HPC

19

 Effective use of “Dark Silicon”

 NVIDIA’s FPUs and TCs cannot be used simultaneously

 What other resources would we put on GPUs instead of TCs?

 Other compute patterns benefiting from matrix engines

 Accelerating sparse matrix multiplication [1] Blocked sparse formats

 Automatically transform compute-intense nest loops to TCs [2]

 Lower/mixed precision and AI in scientific computing

 Convergence of DL/ML and traditional HPC?

 Making mixed precision common in used numerical methods [3]

[1] O. Zachariadis et al., “Accelerating sparse matrix–matrix multiplication with GPU Tensor Cores,” Computers & Electrical Engineering, 2020.

[2] S. G. Bhaskaracharya et al., “Automatic Kernel Generation for Volta Tensor Cores,” 2020.

[3] A. Abdelfattah et al., “A Survey of Numerical Methods Utilizing Mixed Precision Arithmetic,” 2020.

Jens Domke

What if…? Challenges of MEs in HPC

20

 Inefficiency for Level-1 and Level-2 BLAS

 MEs mostly build from Systolic Arrays which are usable for L1/L2 BLAS

but inefficient SIMD/vector units suitable for all [1]

 Programmability burden (mostly hidden behind APIs and LAG libraries)

 For some compute patterns hand-tuned or new libraries need to be written

 Auto-generation of code for MEs still in very early stage [2]

 Reduced portability

 SIMD & GPU-comp. already caused #ifdef nightmare won’t get better?

 Is the Dark Silicon effect generalizable for other CPUs and GPUs?

[1] M. I. Soliman, “Performance Evaluation of Multi-Core Intel Xeon Processors on Basic Linear Algebra Subprograms,” in ICCES 2008, 2008.

[2] S. G. Bhaskaracharya et al., “Automatic Kernel Generation for Volta Tensor Cores,” 2020.

Jens Domke

What if…? Challenges of MEs in HPC

21

 Overhead of data staging to MEs only current issue?

 Vectors in A64FX already highly efficient [1] make them longer?

 Most HPC problems (currently? or inherently?) memory-bound [2]

 DL might be moving towards sparse models / algorithms / data [3]

[1] S. Matsuoka, “How we might achieve another 100x for Fugaku-Next,” in 3rd R-CCS International Symposium, 2021.

[2] J. Domke et al., “Double-precision FPUs in High-Performance Computing: an Embarrassment of Riches?” in IPDPS19, 2019.

[3] T. Hoefler et al., “Sparsity in Deep Learning: Pruning and growth for efficient inference and training in neural networks,” Tech Report,

Feb. 2021.

Jens Domke

Summary & Conclusion

22

We have shown that:

 Less than 54% of CPU cycles was consumed by workloads which could

have called GEMM in 1 year of RIKEN’s K computer operation

 Less than 9% of Spack’s (scientific) software directly links to BLAS

 Occurrence/usage of matrix operations in our experiments is

underwhelming (excluding DL and HPL)

 In 77 benchmarks: only 3.4% of time in aggregate spend in GEMM

 Typical speedup is ≈2x in DL workloads (up to 4x possible) despite the 8x

theoretical advantage of tensor cores for GEMM

 Lower precision TCs can be used to emulate high-prec. GEMM ops

 There are a few opportunities; but no clear evidence signaling that the

future of HPC would be radically transformed by MEs

Jens Domke

Summary & Conclusion

23

Utility of Matrix Engines: let’s recapitulate our initial questions

Q1: How much do HPC workloads actually

depend on BLAS / GEMM operations?

 Very little; on avg. ≤ 4% across 77 BMs

Q2: How well do our DL workloads utilize

existing matrix engines?

 Less than expected; avg. of 2x speedup

Q3: Based on Q1/Q2, how much practical

benefit can we expect for HPC centers?

 Below 25% in ideal case; realistic <<10%

Q4: Should the HPC community actively

invest in ME units & demand FP64 MEs? “free as in beer”

Jens Domke

Open-Source & Acknowledgements

24

 Reproducing our data? Doing your own analysis?

 Use our framework:

https://gitlab.com/domke/MEstudy or

This work was supported by

 Japan Society for the Promotion of Science KAKENHI Grant Number 19K20286;

 JST, PRESTO Grant Number JPMJPR20MA, and CREST JPMJCR1687, Japan;

 New Energy and Industrial Technology Development Organization (NEDO);

 AIST/TokyoTech Real-world Big-Data Computation Open Innovation Laboratory (RWBC- OIL);

 Cygnus HPC system installed at the Multi-disciplinary Cooperative Research Program of the

Center for Computational Sciences, University of Tsukuba

https://gitlab.com/domke/MEstudy

Jens Domke

Figure sources

25

 [1] https://developer.nvidia.com/blog/programming-tensor-cores-cuda-9/

