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 Deep Learning is driving commercial availability of matrix-multiplication units, as well 

as custom silicon (e.g., NVIDIA Tesla, IBM Power10, Intel Sapphire Rapids, Google 

TPUs, etc.)

 Motivation:

 More ME for DL

 Resulting Research Questions for HPC field:

 Q1: How much do HPC workloads actually depend on BLAS / GEMM operations?

 Q2: How well do our DL workloads utilize existing matrix engines?

 Q3: Based on Q1/Q2, how much practical benefit can we expect for HPC centers?

 Q4: Should the HPC community actively invest in ME units?

 Saves power, consumes dark 

silicon

 Faster DL training / inference

 Can be used to accelerate other 

linear algebra (e.g., BLAS3)
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 Compute in DL, for now, is formulated as dense matrix operations

(i.e., convolution as im2col+gemm)

 Vendors reaction to DL workloads  Matrix Engines (MEs)

 Matrix engines are dedicated matrix-matrix multiply units (e.g., 

implemented via systolic arrays)

 TCs and MEs (various sizes) yield perf. improvements for low-precision ops

Overview of existing and emerging general-purpose and AI architectures that

leverage matrix engines to accelerate computations
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 Vectors units can efficiently

increase performance and

energy efficiency
(2.3x higher energy eff. w/ AVX2)

 Going from vector to matrix

units seems like a natural

extension ( clear runtime and

power benefit for FP16 GEMM)

 Counter-question: Are MEs

really what we should be spending

our silicon on, given that Moore’s

law is dying out?

Energy-eff. of Vector Extensions on

a Intel Xeon CPU (measured with PCM)

Power consumption evaluation of GPU

cores and TCs on a single Tesla V100 GPU
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 RIKEN’s operations team collected light job statistics

 Runtime, binary names, symbol table of main binary (via nm), etc.

 Recording period of April ’18 to March ’19

 487,563 scientific applications consuming 543 million node-hours

 For 96% of these we have nm data*

 Analysis

 Binary/jobs with GEMM calls in them: 277,258,182 node-hours (53.4%)

 Amount of GEMM within each job unknown 

 Best case (all GEMM; infinitely fast MEs): ≈ Τ𝟏 𝟐 node-hours (Amdahl’s law)

(*remark: nm from external libs missing, but Fujitsu’s mathlib SSL2 usually

linked statically; and functions are included on as-needed basis)



Jens Domke

GEMM in… Software Lib and Dependencies

7

 Spack: popular package manager for 4371 science/HPC codes

 Provides numerous math libraries (Atlas, BLIS, Eigen, MKL, etc.) 

and tracks package dependencies

 We identified all libraries which provide dense linear algebra functions

 We create dependency trees to also catch indirect dependency on BLAS

 Analysis

 14 math libs

 226 (or 9%) directly

and 1311 indirectly

dependent on “BLAS”

 Best case: 51% of

packages can be fully/partially enhanced by MEs

Dependency Analysis of Dense Linear Algebra Libs

for Spack (w/ & w/o Python and R sub-packages)
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 Utilize benchmarker: https://github.com/undertherain/benchmarker/

 Examining different, common AI models and kernels

 Execute proxy workloads (similar characteristic to MLperf**)

 Collect metrics via (py)NVML and NVIDIA’s nvprof on single server

 Speedup:  FP32 (non-TC) vs. mixed-precision training (w/ TCs)*

(*reason: limited control given to user by pytorch & cuDNN;

**1. MLPerf is the most widely used benchmark suite for AI/ML [www.mlperf.org] )

https://github.com/undertherain/benchmarker/
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 How much does DL generally benefits from MEs?

 Identifying TC kernels from

profiling on Tesla V100

 Avg. 2x (eg. ConvNets) and

up to 4x (for Transformers)

 Not as high as GEMM (7.6x)

 Yet substantial speedup

( justifies TCs)

 Recall: speedup partially result

of lower precision and MEs

 Note: assuming AI/ML loads cont. to be formulated as dense matrix ops

Throughput Improvement from FP32 to Mixed Prec. + TCs 
%TC: percentage of time on TCs (relative to total time); %TC comp: comp. time s

pent on TCs excl. data move.; and %Mem: time for data mov. between host->dev
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…not only speedup, but:

 Mixed precision (TCs) yields

> 2x improvement in energy

efficiency (over FP32)

 Before, architectural

improvement for FP32-based

Resnet50 were marginal

(only 0.8  1.3 images/Joule

from GTX1060 to V100) Energy-efficiency of ResNet50 training



Jens Domke

GEMM in… 77 traditional HPC Workloads

11

 TOP500 benchmarks: HPL and HPCG (Intel’s version)

 Used by community for world-wide supercomputer ranking

 Exascale Computing Project (ECP) Proxy Applications

 Used for procurement of exascale systems by HPC centers in USA

 Version 1.0 contains 12 workloads (we excluded CANDLE)

 RIKEN CCS’ Fiber Miniapp Suite

 8 proxy apps used in procurement of Supercomputer Fugaku

 Represent the priority areas of the Japanese government

 SPEC Benchmarks (CPU 2017 V1.1 & OMP 2012 V1.1 & MPI 2007 V2.0.1)

 Widely accepted benchmark set for industry and HPC vendors
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Measurement methodology to identify GEMM kernels

 Created a Score-P library wrapper for all dense compute functions

of MKL ((C)BLAS, PBLAS, ScaLAPACK, etc.)

 TOP500, ECP, and Fiber proxies:

 Kernel isolation; compiler settings; input selection acc. to previous work [1]

 Link against Score-P wrapper and manual instrument all source-code 
location referring to GEMM or Fortran’s matmul intrinsic

 SPEC benchmarks (unfortunately all external libraries striped out):

 Prioritize GNU compilers (with –O3 –march=native) and mtrain input set

 Find compute-intensive kernels with Intel Advisor  Manually inspect 

598 source code locations  instrument all GEMM ops (via Score-P)

[1] J. Domke et al., “Double-precision FPUs in High-Performance Computing: an Embarrassment of Riches?” in IPDPS19, 2019.
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 HPL: highest GEMM util. with 76.81% and 0.14% in other BLAS calls

 Other BMs performing GEMM: Laghos (41.24%), NTChem (25.78%),

Nekbone (4.58%), and SPEC OMP’s botsspar (18.9%) and bt331 (14.16%),

and SPEC MPI’s milc & dmilc (40.16% & 35.57%) and socorro (9.52%)

 Non-GEMM BLAS & LAPACK even less utilized: highest in mVMC (31%)

 Assume equal distribution: only 3.5% spent in GEMM (cf. ≈12.5d per year)

GEMM, BLAS (non-GEMM functions), and (Sca)LAPACK utilization across 77 HPC benchmarks
Remark: non-GEMM & (Sca)LAPACK kernels not profiled for SPEC BMs
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 Time for thought experiment!, we have/know:

 Breakdown of GEMM vs. non-GEMM cycles (last slide)

 Node-hours per science domain for RIKEN [1] and ANL [2] and hypothetical 

future HPC system with 20% AI cycles

 Methodology:

 Select one application (of our 77) with highest GEMM percentage for each 

science domain (material science, chemistry, biology, etc.)

 Assume app rep. all cycles spent per domain (assume 10% for “other”)

 No MEs≅100% node-hours; assume various ME speedup conf. (2, … ,∞)

 Ignore other inefficiencies: downtime, I/O, init/post-proc., under-utilization, etc. 

 Estimate reduction in node-hours per system / HPC site
[1] AICS, “K computer Annual Report 2016-17,” RIKEN Advanced Institute for Computational Science, Tech Report.

[2] J. Collins et al., “2016 Annual Report - Argonne Leadership Computing Facility,” Argonne National Laboratory, TR: ANL/ALCF-17/1.
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Node-hour reduction extrapolation

 Future system w/ 10% equal

distribution per science domain

and 20% AI/DL/ML

( realistic for convergence

of HPC and AI?)

 Under ideal conditions

w/ 4x ME speedup*:

 5.3% on K &  11.5% @ANL

 23.8% future system

 Please, do your own extrapolation based on your workloads

(*remark: 2-4x realistic w/o precision reduction as shown earlier)
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 Assuming: avail. MEs without support FP64 ops

 Are those low-precision

MEs still valuable? 

 Using Osaki scheme [1] to

“emulate” higher precision

numerics using low-precision

arithmetics by separately calc.

of mantissa and exponent

 Number of splits depends on

required accuracy and value

range of inputs [2] GEMM with Ozaki scheme (image from [2])

[1] K. Ozaki et al., “Error-free transformations of matrix multiplication by using fast routines of matrix multiplication & its applications,” in

Numer. Algor., 2012.

[2] D. Mukunoki et al., “Accurate BLAS Implementations:OzBLASand BLAS-DOT2,” in LSPANC 2020 January, 2020
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 Experiments on a NVIDIA Tesla V100

 Comparing cuBLAS routines and emulated GEMM using TCs

 NVML used for
W measurement

 [S|D]GEMM-TC

can’t outperform

cuBLAS on V100

 …but can mitigate

the lack of FP32

FP64 MEs with

reasonable perf. loss
(remark: DGEMM-TC outperforms cublasDgemm on a NVIDIA Titan RTX due to 

limited FP64 units)

Performance of cuBLAS routines vs. GEMM-TC

(software emulation using TCs; m = n = k = 8192)
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 Effective use of “Dark Silicon”

 NVIDIA’s FPUs and TCs cannot be used simultaneously

 What other resources would we put on GPUs instead of TCs?

 Other compute patterns benefiting from matrix engines

 Accelerating sparse matrix multiplication [1]  Blocked sparse formats

 Automatically transform compute-intense nest loops to TCs [2]

 Lower/mixed precision and AI in scientific computing

 Convergence of DL/ML and traditional HPC?

 Making mixed precision common in used numerical methods [3]

[1] O. Zachariadis et al., “Accelerating sparse matrix–matrix multiplication with GPU Tensor Cores,” Computers & Electrical Engineering, 2020.

[2] S. G. Bhaskaracharya et al., “Automatic Kernel Generation for Volta Tensor Cores,” 2020.

[3] A. Abdelfattah et al., “A Survey of Numerical Methods Utilizing Mixed Precision Arithmetic,” 2020.
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 Inefficiency for Level-1 and Level-2 BLAS

 MEs mostly build from Systolic Arrays which are usable for L1/L2 BLAS

but inefficient  SIMD/vector units suitable for all [1]

 Programmability burden (mostly hidden behind APIs and LAG libraries)

 For some compute patterns hand-tuned or new libraries need to be written

 Auto-generation of code for MEs still in very early stage [2]

 Reduced portability

 SIMD & GPU-comp. already caused #ifdef nightmare  won’t get better?

 Is the Dark Silicon effect generalizable for other CPUs and GPUs?

[1] M. I. Soliman, “Performance Evaluation of Multi-Core Intel Xeon Processors on Basic Linear Algebra Subprograms,” in ICCES 2008, 2008.

[2] S. G. Bhaskaracharya et al., “Automatic Kernel Generation for Volta Tensor Cores,” 2020.
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 Overhead of data staging to MEs  only current issue?

 Vectors in A64FX already highly efficient [1]  make them longer?

 Most HPC problems (currently? or inherently?) memory-bound [2]

 DL might be moving towards sparse models / algorithms / data [3]

[1] S. Matsuoka, “How we might achieve another 100x for Fugaku-Next,” in 3rd R-CCS International Symposium, 2021.

[2] J. Domke et al., “Double-precision FPUs in High-Performance Computing: an Embarrassment of Riches?” in IPDPS19, 2019.

[3] T. Hoefler et al., “Sparsity in Deep Learning: Pruning and growth for efficient inference and training in neural networks,” Tech Report,

Feb. 2021.
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We have shown that:

 Less than 54% of CPU cycles was consumed by workloads which could 

have called GEMM in 1 year of RIKEN’s K computer operation

 Less than 9% of Spack’s (scientific) software directly links to BLAS

 Occurrence/usage of matrix operations in our experiments is 

underwhelming (excluding DL and HPL)

 In 77 benchmarks: only 3.4% of time in aggregate spend in GEMM

 Typical speedup is ≈2x in DL workloads (up to 4x possible) despite the 8x 

theoretical advantage of tensor cores for GEMM

 Lower precision TCs can be used to emulate high-prec. GEMM ops

 There are a few opportunities; but no clear evidence signaling that the 

future of HPC would be radically transformed by MEs
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Utility of Matrix Engines: let’s recapitulate our initial questions

Q1: How much do HPC workloads actually

depend on BLAS / GEMM operations?

 Very little; on avg. ≤ 4% across 77 BMs

Q2: How well do our DL workloads utilize

existing matrix engines?

 Less than expected; avg. of 2x speedup 

Q3: Based on Q1/Q2, how much practical

benefit can we expect for HPC centers?

 Below 25% in ideal case; realistic <<10%

Q4: Should the HPC community actively

invest in ME units & demand FP64 MEs? “free as in beer”
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 Reproducing our data? Doing your own analysis?

 Use our framework:

https://gitlab.com/domke/MEstudy or  
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https://gitlab.com/domke/MEstudy
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 [1] https://developer.nvidia.com/blog/programming-tensor-cores-cuda-9/


