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e 5-min high-level summary
e From Idea to Working HyperX
e Research and Deployment Challenges
e Alternative job placement
e DL-free, non-minimal routing
e In-depth, fair Comparison: HyperX vs. Fat-Tree
e Raw MPI performance
e Realistic HPC workloads

e Throughput experiment

e Lessons-learned and Conclusion
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1 large-scale Prototype — Motivation for o I e

HyperX TokyTech’s 2D HyperX:

e 24 racks (of 42 T2 racks)
TSUBAME 23

, '\ @ 96 QDR switches (+ 1st rail)
S ~3/ without adaptive routing

Full marathon worth of 1B and

ethernet cables re-deployed

e 1536 IB cables (720 AOC)
e 672 compute nodes
e 57% bisection bandwidth

Fig.1: HyperX with n- d|m. integer
lattice (d,,...,d,) base structure
fully connected in each dim.

Multiple tons of
equipment moved around

1 . | 14-aryi3-tree _,
1strail (Fat-Tree) maintenance | TN TN O ~ Fat-Tree ) : \
{ 5(0,0)) (0.ap) L 0, 1) \ st 0)) @A = \'.-‘ 12x8jyper)(
Full 12x8 HyperX constructed ——— == fLevel0 SegeRogeV, AR
e ———l_ [ R LRI T )
And much more ... (31,3 “Qt ]
< e

- PXE / diskless env ready
- Spare AOC under the floor
- BIOS batteries exchanged

. : Fig.2: Indirect 2-level Fat-Tree
= First large-scale 2.7 Pflop/s (DP)
HyperXinstallation in the world!  Theoretical Advantages (over Fat-Tree)
e Reduced HW cost (less AOC/SW) e Lower latency (less hops)
e Only needs 50% bisection BW e Fits rack-based packaging



Evaluating the HyperX and Summary _
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1:1 comparison (as fair as possible) of z LTI IO TN SRt
672-node 3-level Fat-Tree and 12x8 2D HyperX 5 | H
e NICs of 1st and 2" rail even on same CPU socket g ‘ A
e Given our HW limitations (few “bad” links disabled) 3 - ]

% T|||||+r¢?|.|||§71111/2.
Wide variety of benchmarks and configurations ® RESNFE TRRENNEE TERUERIE

Number of compute nodes

e 3x Pure MPI benchmarks Fig.3: HPL (1GB pp, and 1ppn); scaled 7= 672 cn —
e 9x HPC proxy-apps ot is beftar
e 3x Top500 benchmarks o [ T ﬂ
e 4xrouting algorithms (incl. PARX) ¢ = A A . §
e 3xrank-2-node mappings gl R
e 2x execution modes :
Pri mary researCh q ueStionS Fig.4: Baidu’s .(lDefepBench) Allreduce (4-byte flg)étﬁ scaled 722672 cn (;/s. “Fat.—trt.a'e/ftree/linear” baseline)

Q1: Will reduced bisection BW

1. Placement mitigation can alleviate bottleneck

) > 0,

QD UST X UL el (P, 2. HyperX w/ PARX routing outperforms FT in HPL
3. Linear good for small node counts/msg. size

impede performance?

Q2: Two mitigation strategies 4. Random good for DL-relevant msg. size (+/- 1%)
against lack of AR? (= e.g. 5. “Smart” routing suffered SW stack issues
placement vs. “smart” routing) 6. FT + ftree had bad 448-node corner case

Conclusion
HyperX topology is
promising and
cheaper alternative
to Fat-Trees (even
w/o adaptive R) !
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e Lessons-learned and Conclusion



TokyoTech’s new TSUBAMES and T2-modding &« I i

New TSUBAME3 — HPE/SGI ICE XA But still had 42 racks of T2...

Full Bisection Bandwidth

Intel OPA Interconnect. 4 ports/node
Full Bisection / 432 Terabits/s bidirectional
~x2 BW of entire Internet backbone traffic
LS

\"~
N /
\\.0\\\‘ “’
‘\

Full Operations
since Aug. 2017

- \\\

\
“1 \\\\\\5.’0 \‘ 'k

DDN Storage
(Lustre FS 15.9PB+Home 45TB)

are borlnl

Results of a successful
HPE - TokyoTech R&D
collaboration to build a
HyperX proof-of-concept

GRIDScal

DDN

540x Compute Nodes SGI ICE XA + New Blade

Intel Xeon CPUx2 + NVIDIA Pascal GPUx4 (NV-Link)
256GB memory 2TB Intel NVMe SSD

47.2 Al-Petaflops, 12.1 Petaflops
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TSUBAME?2 — Characteristics & Floor Plan R Il e
e 7 years of operation (‘'10-'17)

System

{42 Racks)

1408 GPU Compute Nodes,

34 Nehalem *Fat Memory® Nodes

* GPU-centric (> 4000) high performance & low power

Y 5.7 Pflop/s (4224 NVIdIa GPUS) : Small footprint (~200m2 or 2000 sq.ft), low TCO

High bandwidth memory, optical network, SSD storage...

. TSUBAME 2.0 Rack
W5y New Development g

e 1408 compute nodes and
=100 auxiliary nodes

Node Chassis
Compute Node (4 Compute Nodes)
{2 CPUs.3 GPUs) g

Chip
® 42 compute racks in 2 rooms D &
+6 racks of IB director switches pliii- " 24PrLOPS
S 4 ;AOGms
e Connected by two separated .. B, mosnzee  TrEars e
(Weetmere EP) GPUs(Tesia M2050) S400GB/s Mem BW >1.6T8B/s Mem BW >12T8/s Mem BW Bisecion BW
. . 76.8 GF 515 GFLOPS 80Gbps NW BW 3I5KW Max 1.4 ax
QDR IB networks (full-bisection ™" % e S inegrted Y NEC Corporaton
fat-trees w/ 80Ghit/s injection per node)
2-room floor plan of TSUBAMEZ
room 1 (w/ 2x 9 racks) Optics in room 1: room 2 {w/ 2x 10 racks + 4 racks)

~1100 working + —470 disabled/defect

E@@ DDDDDDDDD

2nd rail

DDDDDDDDp%p

2x 324-p 30x node rack (w/ 4 1B sw Optics room 2 -> room 1! \D
director rack + 2 disabled nodes) —-1180 working + —-520 disabled/defect




Recap: Characteristics of HyperX Topology £ I e

e Base structure
o Direct topology (vs. indirect Fat-Tree) |
e n-dim. integer lattice (d,,...,d,)
e Fully connected in each dimension

AH%%

a) 1D HyperX
with d, = 4

e Advantages (over Fat-Tree)

e Reduced HW cost (less AOC
and switches) for similar perf.

e Lower latency when scaling up &G &O @E; &b

o Fits rack-based packaging scheme b) 2D (4x4) HyperX w/ 32 nodes . S = L)

e Only needs 50% bisection BW to provide Gl Y
100% throughput for uniform random

e But... (theoretically)

e Requires adaptive routing ST GBS ST S o) 3D (Xx¥xZ) HyperX
d) Indirect 2- /eve/ Fat Tree



. b | rl Hewlett Packard
Plan A — A.k.a.: Young and naive © £ 1l

e Scale down #compute nodes Fighting the Spaghetti Monster
= 1280 CN and keep 15t IB rail as FT

e Build 2" rail with 12x10 2D HyperX
distributed over 2 rooms

e Theoretical Challenges
e Finite amount/length of IB AOC
e Cannot remove inter-room AOC

e 4 gen. of AOC =>» mess under floor

= N

:K"::mm T:llDDE]— DDDDE&EﬁEﬁ]DD 0 e “Only” =900 extracted cables from

2 B wite
per urnl.l!

EEEECOO0 _—q 1st room using cheap students labor

Still, too few cables, time, & money ...

(PlatA) S Plan B!
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Plan B — Downsizing to 12x8 HyperX In 1 Roomﬁ Rets o S

Re-wire 1 room with HyperX

topo/ogy 2nd roll (12x8) MyperX N s Stﬂh
DDDDDQ&DD

Fu( m:c direc l

E-%E_l_-DD-I

- nd dim

Full marathon worth of IB and
ethernet cables re-deployed

L]
Multiple tons of ‘
equipment moved around

For 12x8 HyperX need:

e Add 5t + 6t |IB switch to rack Z?ac//;:
= remove 1 chassis e
=>» 7 nodes per SW

Rest of Plan A mostly same §
24 racks (of 42 T2 racks)
96 QDR switches (+ 15t rail) '
1536 IB cables (720 AOC)
672 compute nodes

57% bisection bandwidth
+1 management rack

st rail (Fat-Tree) maintenance

Nk
P

10

Full 12x8 HyperX constructed

And much more ...
- PXE / diskless env read
are AOC under the floor
OS batteries exchanged

=> First large-scale 2.7 Pflop/s (DP)

Rack: HyperX installation in the world!

front



Missing Adaptive Routing and Perf. Implications*

Fat-Tree with ftree routing

e TSUBAMEZ2’s older gen. of QDR IB hardware

has no adaptive routing ®

e HyperX with static/minimum routing suffers

from limited path diversity per dimension

=>» results in high congestion and
low (effective) bisection BW

e Our example: 1 rack (28 cn) of T2
e Fat-Tree >3x theor. bisection BW

e Measured 2.26 GiB/s (FT; ~2.7x)
vs. 0.84GiB/s for HyperX

Mitigation
Strategies???

Jens Domke

cablil

intra-rack

(S

A LD THL T

Node D (receiver)

Node 1D (receiver)

-
o

-
~n

L >

1 4 8 12 16
Node 1D (sender)

1 4 8 12 16
Node 1D (sender)

R

KaH R-CCS kT ENtErprise

20

HyperX with DFSSSP routing

rl Hewlett Packard

24

Measured BW in mpiGraph for 28 Nodes

Thoughput [in GiByte/s]

0 GiB/s

11
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Option 1 — Alternative Job Allocation Scheme Rom 17 e

Idea: spread out processes across entire topology

e Increases path diversity for incr. BW

e Compact allocation =» single congested link

e Spread out allocation = nearly all paths available

e Our approach: randomly assign nodes
(Better: proper topology-mapping based
on real comm. demands per job)

e Caveats:
e Increases hops/latency
e Only helps if job uses subset up nodes
e Hard to achieve in day-to-day operation

2D HyperX



=
P. l FI Hewlett Packard

Option 2 — Non-minimal, Pattern-aware Routing® s -

Idea (Part 1): enforcing non-minimal routing for higher
path diversity

(+ Part 2) while integrating traffic-pattern and
comm.-demand awareness to emulate adaptive
and congestion-aware routing

e Pattern-Aware Routing for hyperX (PARX)
e “Split” our 2D HyperX into 4 quadrants
e Assign 4 “virtual LIDs” per port (IB’'s LMC)
e Smart link removal and path calculation

.' -t 3 .l (.1"
) S, Y
@
Q»;;‘. - Tt I
OO0 =90
e - ';" 1 A‘ \
O (QNOROC
—— = . ) |
Zod0 -8 -8 -0
© = 7 J Forced
“ T detours
r\»t :
J r |

e Optimize static routing for process-locality and know
comm. matrix and balance “useful” paths across links:

e Basis: DFSSSP and SAR (IPDPS’11 and SC’16 papers)

e Needs support by MPI/comm. layer
e Set LID%st based on msg. size (lat: short; BW: long)

Minimum
paths



Methodology — 1:1 Comp. to 3-level Fat-Tree R o I e

e Comparison as fair as possible of 672-node 3-level Fat-Tree and 2D HyperX
e NICs of 15t and 2" rail even on same CPU socket

e Given our HW limitations (few “bad” links disabled) (14 -aryi3-tree
“Fat-Tree ).

e 2topologies: Fat-Tree vs. HyperX (%ﬁ ™ g
. e S p=spe

e 3 placements: linear | clustered | random / S =

e 4routing algo.: ftree | (DF)SSSP | PARX

e 5 combinations: FT+ftreetlinear (baseline) vs. FT+SSSP+cluster vs.
HX+DFSSSP+linear vs. HX+DFSSSP+random vs. HX+PARX+cluster

T
12x8HyperX *
geogecone

e ...and many benchmarks and applications (all with 1 ppn):
e Solo/capability runs: 10 trials; #cn: 7,14,...,672 (or pow?2); conf. for weak-scaling
e Capacity evaluation: 3 hours; 14 applications (32/56 cn); 98.8% system util.
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Benchmarks and (real-world) HPC Appllcanons@ RUES oo EREAE

Intel’s IMB Various MPI benchmarks (here limited to: MPI-1 collectives)

e MPI BMs to evaluate peak perf.

Netgauge eBB Measure (routing-induced) effective bisection bandwidth of topology

e Applications sampled broadl
pp p y Baidu’s Allred. Evaluate MPI traffic of Deep Learning workload for various msg. sizes

from range of HPC workloads

o Requ': para”el |mplementat|0n Solves dense system of linear equations Ax = b

and “gOOd” inPUt (Wrt' runtime) HPCG Conjugate gradient method on sparse matrix A to solve Ax = b
e 4x ECP proxy-apps Graph500 Performs distributed breadth-first search (BFS) on a large graph
» 3 RIKEN R-CCS priority apps
e 1X Trlnlty BM (for NERSC SyStemS) Algebraic multigrid solver for unstructured grids
e 1xXCORAL procurement BM CoMD Generate atomic transition pathways between any two structures of a protein
miniFE Proxy for unstructured implicit finite element or finite volume applications
o ... and the usual “TOP 500” BMS SWFFT Fast Fourier transforms (FFT) used in by HW-Accel. Cosmology Code (HACC)
FFVC Solves the 3D unsteady thermal flow of the incompressible fluid

mVMC Variational Monte Carlo method for interacting fermion systems

9 Shou Id g ve QOOd Ind |Cat|0n NTChem Molecular electronic structure calculation of std. quantum chemistry approaches
Of Hyperx topo- performance MILC  Quantum chromodynamics (QCD) simulations using lattice gauge theory

LLNL’s gb@II First-principles molecular dynamics (MD) using DFT
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MPI — Subset of Intel’s MPl Benchmarks £ Il fewe

Far-Trea | SSSP T cusiered

HyperX { DFSSSP I random
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a) IMB Gather — Relative
gain over FT+ftree+linear

e Performance issue in PARX (highly likely: unoptimized bfo PML) b) IMB Barrier

Combinations

e Overall: HX sometimes better or worse Gt o figho

Fa-Treo .
firee f knenr

depending on MPI coll., msg. size, e
routing, & alloc. ... no clear winner! g

e Good results despite missing AR e m

PARX ) chustarec
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Number of compute nodes
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MPI — Netgauge s eBB Benchmark o RES e B

Eff. Bisection Bandwidth [in GiB/s]
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S55F L dimeend .

HyzerX

IB msg. payload) e
DFSEEP srancom
-
e Intra-Rack throughput for HyperX:

DFSSSP vs. PARX routing

Longer/more paths as enabled by PARX
alleviates perf. drop (- indicates theor.
benefits when getting HX with AR)
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| - J_ __..- N ‘__A
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x500 Benchmarks — HPL, HPCG, Graph500 P *Egr' fj—-‘é-“‘*""

SN
Sog0o00s

.......

)
g 12000
e HPL suffers from compact alloc. on HX 3 [T D
. . c
but HyperX beats FT with PARX routing 3=
g emo
e HX & FT perform same for HPCG § w0 [
S o . & 2000 L -18 -
better S o5~ 88387353 3888788~ 288878s a s I -
w TIOSTS0T 69059000 SFS0T00T CooaToGe £ M ES SEERENER S ANENE NS TR NN
A E 2400 (TTTTTTTT T TTTTTTI T TTTTTTTT T 3 TEBBYISE TIEBYISN CUSRNISL TIRRNAFY TIasngsn
; o T : 7 Number of compute nodes
8 1600 - i . a) HPL (1GB pp)
& 1200 | ! i i | - T
2 ‘ ‘ -
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e <] HyzerX
Number of compute nodes E 160 / 1 e e
b) HPCG £ 120 . = = & sessspiramon M
E 80 3 F & Hpery .
- ® | PARX!duzered
. o - ]
e HyperX w/ DFSSSP + rand aIIocatlon/g/W = : apans
g ola AT L1111 NeT i1y T 11111
outperforms FT for Graph500 g "eSNBEEY TOSNIRLY "eaN3EEY

Number of compute nodes

¢c) Graph500



Realistic Workloads — Procurement- /Proxy Apps 2 Il

Subset of HPC workloads; reporting
kernel/solver times (no pre-/post proc.)

Almost no noticeable difference (all
within */-1% rel. gains) when switching
Fat-Tree - HyperX for some apps

SWFFT: PARX best option for HyperX

(pattern-aware?) and only option to scale

to 512 nodes (all 10 in 233s; see “+Inf”)

performance variability

= PARX overall less “bad” cf. raw MPI BM
(proxy-apps only =20% on avg. in MPI)

=» NO severe issues ©

KornaNRuntame [in s

MVMC: HyperX/DFSSSP(/linear) shows lowest

S

. but AR is desired

i
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Capacity Evaluations — Multi-Job Throughput

350

Fat-Tree / ftree | inear

|
- Hewlett Packard
e To Enterprise

R cm
amzk R-CCS

betfer

More realistic scenario for most i
HPC centers (multi-job exec.)

[T - I N
8 8 8

Number valid run
8

Metric: #runs in 3h on shared
network (job alloc. fix w/ hostfile)

c 8

Sum of finished runs: |
1202

HyperX | DFSSSP [ inear

Fat-Tree / SSSP [ clustered /&

Sum of finished runs:
980

"f'\ Q’Q“V’% %,

HyperX / DFSSSP / random

Unexpected: HX beats FT/ft/lin. g

by 12.7% (DF/lin.) and 3% (PARX)
MILC negatively affected by ﬁ B H
. i . | ol 5
inter-job interferences (but Imear/q,c 000 Yo e

alloc. on HX best among all 5)

Linear vs. random vs. PARX:
Interferences have worse effect than
bottlenecks in theoretical bisection BW?

HyperX ! PARX / clustered

& . “a G 7
% G Ty "0%‘“0

Sum of firished runs:
1017

06 Sum of finished runs:

350
{ 300 "
{ 260 3
2
{ 2003
>
150 g

{ 100

z

1233

3 4 50




- i rl chlttpacl( rd
Lessons-learned and Conclusion gom

e Fun project (despite cable mess ©) & enjoyable Univ./Industry collaboration
e Deadlock-free routing is essential for HyperX (in static case; likely for AR too)

e PARX prototype shows potential (- could be adopted elsewhere)
but MPI stack prohibited better results

e 2D HyperX (57% bisection BW; w/o AR) vs. under-subscribed 3-Ivl Fat-Tree
- our 12x8, 672-node HyperX did extremely well in all tests

e Open research: ideal job allocation scheme and/or adaptive routing for
different usage models (capacity vs. capability systems)

e HyperX a compelling alternative...? Definitively!
=» Looking forward to next “real” HyperX system with adaptive routing!
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