
HyperX Topology
First At-Scale Implementation and Comparison
to the Fat-Tree

Co-Authors:

Prof. S. Matsuoka

Ivan R. Ivanov

Yuki Tsushima

Tomoya Yuki

Akihiro Nomura

Shin’ichi Miura

Nic McDonald

Dennis L. Floyd

Nicolas Dubé

Jens Domke

Outline

 5-min high-level summary

 From Idea to Working HyperX

 Research and Deployment Challenges

 Alternative job placement

 DL-free, non-minimal routing

 In-depth, fair Comparison: HyperX vs. Fat-Tree

 Raw MPI performance

 Realistic HPC workloads

 Throughput experiment

 Lessons-learned and Conclusion

2

Jens Domke

1st large-scale Prototype – Motivation for

HyperX

Theoretical Advantages (over Fat-Tree)

 Reduced HW cost (less AOC / SW)

 Only needs 50% bisection BW

3

Full marathon worth of IB and

ethernet cables re-deployed

Multiple tons of

equipment moved around

1st rail (Fat-Tree) maintenance

Full 12x8 HyperX constructed

And much more …
- PXE / diskless env ready
- Spare AOC under the floor
- BIOS batteries exchanged

 First large-scale 2.7 Pflop/s (DP)

HyperX installation in the world!

Fig.1: HyperX with n-dim. integer

lattice (d1,…,dn) base structure

fully connected in each dim.

TokyTech’s 2D HyperX:

 24 racks (of 42 T2 racks)

 96 QDR switches (+ 1st rail)
without adaptive routing

 1536 IB cables (720 AOC)

 672 compute nodes

 57% bisection bandwidth

Fig.2: Indirect 2-level Fat-Tree

 Lower latency (less hops)

 Fits rack-based packaging

Jens Domke

1:1 comparison (as fair as possible) of
672-node 3-level Fat-Tree and 12x8 2D HyperX
 NICs of 1st and 2nd rail even on same CPU socket

 Given our HW limitations (few “bad” links disabled)

Wide variety of benchmarks and configurations
 3x Pure MPI benchmarks

 9x HPC proxy-apps

 3x Top500 benchmarks

 4x routing algorithms (incl. PARX)

 3x rank-2-node mappings

 2x execution modes

Primary research questions

Q1: Will reduced bisection BW
(57% for HX vs. ≥100% for FT)
impede performance?

Q2: Two mitigation strategies
against lack of AR? (e.g.
placement vs. “smart” routing)

Evaluating the HyperX and Summary

4

Fig.4: Baidu’s (DeepBench) Allreduce (4-byte float) scaled 7 672 cn (vs. “Fat-tree / ftree / linear” baseline)

1. Placement mitigation can alleviate bottleneck
2. HyperX w/ PARX routing outperforms FT in HPL
3. Linear good for small node counts/msg. size
4. Random good for DL-relevant msg. size (Τ+ − 1%)
5. “Smart” routing suffered SW stack issues
6. FT + ftree had bad 448-node corner case

3.

4.

5.

6.

Conclusion
HyperX topology is
promising and
cheaper alternative
to Fat-Trees (even
w/o adaptive R) !

Fig.3: HPL (1GB pp, and 1ppn); scaled 7 672 cn

1.

2.

Jens Domke

Outline

 5-min high-level summary

 From Idea to Working HyperX

 Research and Deployment Challenges

 Alternative job placement

 DL-free, non-minimal routing

 In-depth, fair Comparison: HyperX vs. Fat-Tree

 Raw MPI performance

 Realistic HPC workloads

 Throughput experiment

 Lessons-learned and Conclusion

5

Jens Domke

TokyoTech’s new TSUBAME3 and T2-modding

New TSUBAME3 – HPE/SGI ICE XA But still had 42 racks of T2…

6

Full Bisection Bandwidth

Intel OPA Interconnect. 4 ports/node

Full Bisection / 432 Terabits/s bidirectional

~x2 BW of entire Internet backbone traffic

DDN Storage

(Lustre FS 15.9PB+Home 45TB)

540x Compute Nodes SGI ICE XA + New Blade

Intel Xeon CPUx2 + NVIDIA Pascal GPUx4 (NV-Link)

256GB memory 2TB Intel NVMe SSD

47.2 AI-Petaflops, 12.1 Petaflops

Full Operations

since Aug. 2017

Results of a successful

HPE – TokyoTech R&D

collaboration to build a

HyperX proof-of-concept

Fat-Trees
are boring!

Jens Domke

TSUBAME2 – Characteristics & Floor Plan

 7 years of operation (‘10–’17)

 5.7 Pflop/s (4224 Nvidia GPUs)

 1408 compute nodes and

≥100 auxiliary nodes

 42 compute racks in 2 rooms

+6 racks of IB director switches

 Connected by two separated

QDR IB networks (full-bisection

fat-trees w/ 80Gbit/s injection per node)

7

2-room floor plan of TSUBAME2

Jens Domke

Recap: Characteristics of HyperX Topology

 Base structure

 Direct topology (vs. indirect Fat-Tree)

 n-dim. integer lattice (d1,…,dn)

 Fully connected in each dimension

 Advantages (over Fat-Tree)

 Reduced HW cost (less AOC

and switches) for similar perf.

 Lower latency when scaling up

 Fits rack-based packaging scheme

 Only needs 50% bisection BW to provide

100% throughput for uniform random

 But… (theoretically)

 Requires adaptive routing

8

a) 1D HyperX
with d1 = 4

b) 2D (4x4) HyperX w/ 32 nodes

c) 3D (XxYxZ) HyperX

d) Indirect 2-level Fat-Tree

Jens Domke

Plan A – A.k.a.: Young and naïve

 Scale down #compute nodes
 1280 CN and keep 1st IB rail as FT

 Build 2nd rail with 12x10 2D HyperX

distributed over 2 rooms

 Theoretical Challenges

 Finite amount/length of IB AOC

 Cannot remove inter-room AOC

9

Fighting the Spaghetti Monster

 4 gen. of AOC mess under floor

 “Only” ≈900 extracted cables from

1st room using cheap students labor

Still, too few cables, time, & money …

Plan A Plan B !

Jens Domke

Plan B – Downsizing to 12x8 HyperX in 1 Room

For 12x8 HyperX need:

 Add 5th + 6th IB switch to rack

 remove 1 chassis

 7 nodes per SW

 Rest of Plan A mostly same

 24 racks (of 42 T2 racks)

 96 QDR switches (+ 1st rail)

 1536 IB cables (720 AOC)

 672 compute nodes

 57% bisection bandwidth

 +1 management rack

10

Full marathon worth of IB and
ethernet cables re-deployed

Multiple tons of
equipment moved around

1st rail (Fat-Tree) maintenance

Full 12x8 HyperX constructed

And much more …
- PXE / diskless env ready
- Spare AOC under the floor
- BIOS batteries exchanged

 First large-scale 2.7 Pflop/s (DP)
HyperX installation in the world!Rack:

front

Rack:
back

Re-wire 1 room with HyperX
topology

Jens Domke

Missing Adaptive Routing and Perf. Implications

 TSUBAME2’s older gen. of QDR IB hardware

has no adaptive routing

 HyperX with static/minimum routing suffers

from limited path diversity per dimension

 results in high congestion and

low (effective) bisection BW

 Our example: 1 rack (28 cn) of T2

 Fat-Tree >3x theor. bisection BW

 Measured 2.26GiB/s (FT; ~2.7x)

vs. 0.84GiB/s for HyperX

11

Measured BW in mpiGraph for 28 NodesHyperX
intra-rack
cabling

Mitigation

Strategies???

Jens Domke

Option 1 – Alternative Job Allocation Scheme

12

Idea: spread out processes across entire topology

 Increases path diversity for incr. BW

 Compact allocation single congested link

 Spread out allocation nearly all paths available

 Our approach: randomly assign nodes

(Better: proper topology-mapping based

on real comm. demands per job)

 Caveats:

 Increases hops/latency

 Only helps if job uses subset up nodes

 Hard to achieve in day-to-day operation
2D HyperX

3,0 3,1 3,33,2

2,0 2,1 2,32,2

0 1 3

1,0 1,1 1,31,2

0,0 0,1 0,30,2

2 4 5 6

2D HyperX

3,0 3,1 3,33,2

2,0 2,1 2,32,2

0

1

1,0 1,1 1,31,2

0,0 0,1 0,30,2

2

4 5

6

3

Jens Domke

Option 2 – Non-minimal, Pattern-aware Routing

Idea (Part 1): enforcing non-minimal routing for higher

path diversity (not universally possible with IB)

(+ Part 2) while integrating traffic-pattern and

comm.-demand awareness to emulate adaptive

and congestion-aware routing

 Pattern-Aware Routing for hyperX (PARX)

 “Split” our 2D HyperX into 4 quadrants

 Assign 4 “virtual LIDs” per port (IB’s LMC)

 Smart link removal and path calculation

 Optimize static routing for process-locality and know

comm. matrix and balance “useful” paths across links:

 Basis: DFSSSP and SAR (IPDPS’11 and SC’16 papers)

 Needs support by MPI/comm. layer

 Set LIDi
dest based on msg. size (lat: short; BW: long)

13

Quadrants

Forced
detours

Minimum
paths

Jens Domke

Methodology – 1:1 Comp. to 3-level Fat-Tree

 Comparison as fair as possible of 672-node 3-level Fat-Tree and 2D HyperX

 NICs of 1st and 2nd rail even on same CPU socket

 Given our HW limitations (few “bad” links disabled)

 2 topologies: Fat-Tree vs. HyperX

 3 placements: linear | clustered | random

 4 routing algo.: ftree | (DF)SSSP | PARX

 5 combinations: FT+ftree+linear (baseline) vs. FT+SSSP+cluster vs.

HX+DFSSSP+linear vs. HX+DFSSSP+random vs. HX+PARX+cluster

 …and many benchmarks and applications (all with 1 ppn):

 Solo/capability runs: 10 trials; #cn: 7,14,…,672 (or pow2); conf. for weak-scaling

 Capacity evaluation: 3 hours; 14 applications (32/56 cn); 98.8% system util.

14

Jens Domke

Benchmarks and (real-world) HPC Applications

 MPI BMs to evaluate peak perf.

 Applications sampled broadly

from range of HPC workloads
 Requ.: parallel implementation

and “good” input (wrt. runtime)

 4x ECP proxy-apps

 3x RIKEN R-CCS priority apps

 1x Trinity BM (for NERSC systems)

 1x CORAL procurement BM

 …and the usual “TOP 500” BMs

 Should give good indication

of HyperX topo. performance

15

Raw MPI Workload

Intel’s IMB Various MPI benchmarks (here limited to: MPI-1 collectives)

Netgauge eBB Measure (routing-induced) effective bisection bandwidth of topology

Baidu’s Allred. Evaluate MPI traffic of Deep Learning workload for various msg. sizes

x500 Workload

HPL Solves dense system of linear equations Ax = b

HPCG Conjugate gradient method on sparse matrix A to solve Ax = b

Graph500 Performs distributed breadth-first search (BFS) on a large graph

Proxy-Apps Workload

AMG Algebraic multigrid solver for unstructured grids

CoMD Generate atomic transition pathways between any two structures of a protein

miniFE Proxy for unstructured implicit finite element or finite volume applications

SWFFT Fast Fourier transforms (FFT) used in by HW-Accel. Cosmology Code (HACC)

FFVC Solves the 3D unsteady thermal flow of the incompressible fluid

mVMC Variational Monte Carlo method for interacting fermion systems

NTChem Molecular electronic structure calculation of std. quantum chemistry approaches

MILC Quantum chromodynamics (QCD) simulations using lattice gauge theory

LLNL’s qb@ll First-principles molecular dynamics (MD) using DFT

Jens Domke

MPI – Subset of Intel’s MPI Benchmarks

 Tested Barrier, Bcast, Gather, Scatter, (All)reduce, Alltoall

 Here: HyperX competitive for small and outperforms FT for large msg.

 Performance issue in PARX (highly likely: unoptimized bfo PML)

 Overall: HX sometimes better or worse

depending on MPI coll., msg. size,

routing, & alloc. … no clear winner!

 Good results despite missing AR

a) IMB Gather – Relative
gain over FT+ftree+linear

b) IMB Barrier

Fat-Tree HyperX

Fat-Tree HyperX

16

Jens Domke

MPI – Netgauge’s eBB Benchmark

 Similar results for effective bisection BW (with 1MiB msg. payload)

 HyperX+DFSSSP+linear: intra-rack BW issue

 Longer/more paths as enabled by PARX

alleviates perf. drop (indicates theor.

benefits when getting HX with AR)

 Similar to PARX vs. minimal routing in

intra-rack case, cf. 28-cn mpiGraph BM

FT+ftree+linear

Intra-Rack throughput for HyperX:
DFSSSP vs. PARX routing

17

Jens Domke

 HPL suffers from compact alloc. on HX

but HyperX beats FT with PARX routing

 HX & FT perform same for HPCG

 HyperX w/ DFSSSP + rand allocation

outperforms FT for Graph500

c) Graph500

x500 Benchmarks – HPL, HPCG, Graph500

18

a) HPL (1GB pp)

b) HPCG

Jens Domke

Realistic Workloads – Procurement-/Proxy-Apps

 Subset of HPC workloads; reporting

kernel/solver times (no pre-/post proc.)

 Almost no noticeable difference (all

within Τ+ −1% rel. gains) when switching

Fat-Tree HyperX for some apps

 SWFFT: PARX best option for HyperX

(pattern-aware?) and only option to scale

to 512 nodes (all 10 in 233s; see “+Inf”)

 mVMC: HyperX/DFSSSP(/linear) shows lowest

performance variability

 PARX overall less “bad” cf. raw MPI BMs

(proxy-apps only ≈20% on avg. in MPI)

 No severe issues … but AR is desired
19

a) AMG

b) SWFFT

c) mVMC

Jens Domke

Capacity Evaluations – Multi-Job Throughput

 More realistic scenario for most

HPC centers (multi-job exec.)

 Metric: #runs in 3h on shared

network (job alloc. fix w/ hostfile)

 Unexpected: HX beats FT/ft/lin.

by 12.7% (DF/lin.) and 3% (PARX)

 MILC negatively affected by

inter-job interferences (but linear

alloc. on HX best among all 5)

 Linear vs. random vs. PARX:

Interferences have worse effect than

bottlenecks in theoretical bisection BW?

20

Jens Domke

Lessons-learned and Conclusion

 Fun project (despite cable mess) & enjoyable Univ./Industry collaboration

 Deadlock-free routing is essential for HyperX (in static case; likely for AR too)

 PARX prototype shows potential (could be adopted elsewhere)

but MPI stack prohibited better results

 2D HyperX (57% bisection BW; w/o AR) vs. under-subscribed 3-lvl Fat-Tree

 our 12x8, 672-node HyperX did extremely well in all tests

 Open research: ideal job allocation scheme and/or adaptive routing for

different usage models (capacity vs. capability systems)

 HyperX a compelling alternative…? Definitively!

 Looking forward to next “real” HyperX system with adaptive routing!

21

Jens Domke 22

Acknowledgements to HPE & Participants

Tokyo Tech (GSIC)

Prof. S. Matsuoka Prof. T. Endo

Jens Domke Tomoya Yuki

Akihiro Nomura Shinichi Miura

HPE

Mike Vildibill Nicolas Dubé

Nic McDonald John Kim

Takao Hatazaki Dennis L. Floyd

Kuang-Yi Wu Kevin Leigh

≥ 40 Tokyo Tech Student

(and other) Volunteers

Nagashio, Shibuya, Aizawa, Takai

Ito, Oshino, Numata, Masukawa

Iijima, Minematsu, Muto, Oosawa

Yui, Hamaguchi, Asako, Fukaishi

Ivanov, Mateusz, Tam, Kitada

Ueno, Katase, Numata, Tsushima

Fukuda, Suzuki, Sena, Takahashi

Okada, Endo, Baba, Harada

Sogame, Higashi, Wahib, Alex

Artur, Bofang, Haoyu, Matsumura

Tsuchikawa, Yashima

Avail. software stack:

gitlab.com/domke/t2hx

Funded by & in collab. with Hewlett Packard Enterprise,
and supported by Fujitsu, JSPS KAKENHI, and JSP CREST

