
Satoshi MATSUOKA Laboratory

Dept. of Math. and Compute Sci.

Tokyo Institute of Technology

Jens Domke, Dr.

Double-precision FPUs in
High-Performance Computing:
An Embarrassment of Riches?

1
33rd IEEE IPDPS, 21. May 2019, Rio de Janeiro, Brazil

Jens Domke

Outline

Motivation and Initial Question

Methodology

– CPU Architectures

– Benchmarks and Execution Environment

– Information Extraction via Performance Tools

Results

– Breakdown FP32 vs. FP64 vs. Integer

– Gflop/s, …

– Memory-Bound vs Compute-Bound

Discussion & Summary & Lessons-learned

Suggestions for Vendors and HPC Community

2

Jens Domke

Motivation and Initial Question (To float … or not to float …?)

Thanks to the (curse of) the TOP500 list, the HPC community (and vendors)

are chasing higher FP64 performance, thru frequency, SIMD, more FP units, …

Motivation:

Less FP64 units

Resulting Research Questions:

Q1: How much do HPC workloads actually depend on FP64 instructions?

Q2: How well do our HPC workloads utilize the FP64 units?

Q3: Are our architectures well- or ill-balanced: more FP64, or FP32, Integer,

memory?

… and …

Q4: How can we actually verify our hypothesis, that we need less FP64 and

should invest $ and chip area in more/faster FP32 units and/or memory)?

3

Saves power

Free chip area (for e.g.: FP16)

Less divergence of “HPC-capable”

CPUs from mainstream processors

Jens Domke

Approach and Assumptions

Idea/Methodology

Compare two similar chips; different balance in FPUs  Which?

Use ‘real’ applications running on current/next-gen. machines  Which?

Assumptions

Our HPC (mini-)apps are well-optimized

– Appropriate compiler settings

– Used in procurement of next gen. machines (e.g. Summit, Post-K, …)

– Mini-apps: Legit representative of the priority applications 1

We can find two chips which are similar

– No major differences (besides FP64 units)

– Aside from minor differences we know of (…more on next slide)

The measurement tools/methods are reliable

– Make sanity checks (e.g.: use HPL and HPCG as reference)

1 Aaziz et at, “A Methodology for Characterizing the Correspondence Between Real and Proxy Applications”, in IEEE Cluster 2018

4

Jens Domke

Methodology – CPU Architectures

Two very similar CPUs with large difference in FP64 units

Intel dropped 1 DP unit for 2x SP and 4x VNNI (similar to Nvidia’s TensorCore)

Vector Neural Network Instruction (VNNI) supports SP floating point and mixed

precision integers (16-bit input/32-bit output) ops

 KNM: 2.6x higher SP peak performance and 35% lower DP peak perf.

(Figure source: https://www.servethehome.com/intel-knights-mill-for-machine-learning/)
5

Jens Domke

Methodology – CPU Architectures

Results may be subject to adjustments to reflect minor differences (red)

Use dual-socket Intel Broadwell-EP as reference system (to avoid any

“bad apples -to- bad apples” comparison); values per node:

6

Feature Knights Landing Knights Mill

Model Intel Xeon Phi CPU 7210F Intel Xeon Phi CPU 7295

of Cores 64 (4x HT) 72 (4x HT)

CPU Base Frequency 1.3 GHz 1.5 GHz

Max Turbo Frequency 1.5 GHz (1 or 2 cores)

1.4 GHz (all cores)
1.6 GHz

CPU Mode Quadrant mode Quadrant mode

TDP 230 W 320 W

Memory Size 96 GiB 96 GiB

 Triad Stream BW 71 GB/s 88 GB/s

MCDRAM Size 16 GB 16 GB

 Triad BW (flat mode) 439 GB/s 430 GB/s

 MCDRAM Mode Cache mode (caches DDR) Cache mode

LLC Size 32 MB 36 MB

Instruction Set Extension AVX-512 AVX-512

Theor. Peak Perf. (SP) 5,324 Gflop/s 13,824 Gflop/s

Theor. Peak Perf. (DP) 2,662 Gflop/s 1,728 Gflop/s

2x Broadwell-EP Xeon

Xeon E5-2650 v4

24 (2x HT)

2.2 GHz

2.9 GHz

N/A

210 W

256 GiB

122 GB/s

N/A

N/A

N/A

60 MB

AVX2 (256 bits)

1,382 Gfflop/s

691 Gflop/s

Jens Domke

Methodology – Benchmarks and Execution Environment

Exascale Computing Project (ECP) proxy applications (12 apps)

– Used in procuring CORAL machine

– They mirror the priority applications for DOE/DOD (US)

RIKEN R-CCS’ Fiber mini-apps (8 apps)

– Used in procuring Post-K computer

– They mirror the priority applications for RIKEN (Japan)

Intel’s HPL and HPCG (and BabelStream) (3 apps)

– Used for sanity checks

Other mini-app suites exist:

– PRACE (UEABS), NERSC DOE mini-apps, LLNL Co-Design ASC proxy-

apps and CORAL codes, Mantevo suite, …

7

Jens Domke

Methodology – Benchmarks and Execution Environment

23 mini-apps used in procurement process of next-gen machines

8

ECP Workload Post-K Workload

AMG Algebraic multigrid solver for unstructured grids CCS QCD Linear equation solver (sparse matrix) for lattice

quantum chromodynamics (QCD) problem

CANDLE DL predict drug response based on molecular

features of tumor cells
FFVC Solves the 3D unsteady thermal flow of the

incompressible fluid

CoMD Generate atomic transition pathways between any two

structures of a protein
NICAM Benchmark of atmospheric general circulation model

reproducing the unsteady baroclinic oscillation

Laghos Solves the Euler equation of compressible gas

dynamics
mVMC Variational Monte Carlo method applicable for a wide

range of Hamiltonians for interacting fermion systems

MACSio Scalable I/O Proxy Application NGSA Parses data generated by a next-generation genome

sequencer and identifies genetic differences

miniAMR Proxy app for structured adaptive mesh refinement (3D

stencil) kernels used by many scientific codes
MODYLAS Molecular dynamics framework adopting the fast

multipole method (FMM) for electrostatic interactions

miniFE Proxy for unstructured implicit finite element or finite

volume applications
NTChem Kernel for molecular electronic structure calculation of

standard quantum chemistry approaches

miniTRI Proxy for dense subgraph detection, characterizing

graphs, and improving community detection
FFB Unsteady incompressible Navier-Stokes solver by

finite element method for thermal flow simulations

Nekbone High order, incompressible Navier-Stokes solver

based on spectral element method
Bench Workload

SW4lite Kernels for 3D seismic modeling in 4th order

accuracy
HPL Solves dense system of linear equations Ax = b

SWFFT Fast Fourier transforms (FFT) used in by Hardware

Accelerated Cosmology Code (HACC)
HPCG Conjugate gradient method on sparse matrix

XSBench Kernel of the Monte Carlo neutronics app: OpenMC Stream Throughput measurements of memory subsystem

Jens Domke

Methodology – Benchmarks and Execution Environment

OS: clean install of centos 7

Kernel: 3.10.0-862.9.1.el7.x86_64 (w/ enabled meltdown / spectre patches)

Identical SSD for all 3 nodes

Similar DDR4 (with 2400 MHz; different vendors)

No parallel FS (lustre/NFS/…)  low OS noise

Boot with `intel_pstate=off` for better CPU frequency control

Fixed CPU core/[uncore] freq. to max: 2.2/[2.7] BDW, 1.3 KNL, 1.5 KNM

Compiler: Intel Parallel Studio XE (2018; update 3) with default flags for each

benchmark plus additional: `-ipo -xHost`

(exceptions: AMG w/ xCORE-AVX2 and NGSA bwa with gcc)

and Intel’s Tensorflow with MKL-DNN (for CANDLE)

9

Jens Domke

Methodology – Info. Extraction via Performance Tools

Step 1: Check benchmark settings for strong-scaling runs ( none for MiniAMR)

( important for fair comparison!)

Step 2: Identify kernel/solver section of the code  wrap with additional

instructions for timing, SDE, PCM, VTune, etc.

Step 3: Find “optimal” #MPI + #OMP configuration for each benchmark

(try under-/over-subscr.; each 3x runs; “best” based on time or Gflop/s)

Step 4: Run 10x “best” configuration w/o additional tool

Step 5: Exec. proxy-app once with each performance tool

10

Select
inputs &

parameters

Determine
“Best”

Parallelism?

Exec Perf. &
Profile &

Freq. runs

Analyze
(anomalies?)

Patch/
Compile

Jens Domke

Methodology – Info. Extraction via Performance Tools

Early observation

Relatively high runtime in initializing / post-processing within proxy-apps

– E.g. HPCG only 11% – 30% in solver (dep. on system)

Measuring complete application yields misleading results

 Need to wrap kernel and on/off instructions for tools:

11

Jens Domke

Methodology – Info. Extraction via Performance Tools

Performance analysis tools we used (on the solver part):

GNU perf (perf. counters, cache accesses, …)

Intel SDE (wraps Intel PIN; simulator to count each executed instruction)

Intel PCM (measure memory [GB/s], power, cache misses, …)

Intel Vtune (HPC/memory mode: FPU, ALU util, memory boundedness, …)

Valgrind, heaptrack (memory utilization)

(tried many more tools/approaches with less success )

12

Raw Metric Method/Tool

Runtime [s] MPI_Wtime()

#{FP / integer operations} Software Development Emulator

#{Branches operations} SDE

Memory throughput [B/s] PCM (pcm-memory.x)

#{L2/LLC cache hits/misses} PCM (pcm.x)

Consumed Power [Watt] PCM (pcm-power.x)

SIMD instructions per cycle perf + VTune (‘hpc-performance’)

Memory/Back-end boundedness perf + VTune (‘memory-access’)

Jens Domke

Methodology – Problems on the Way

Many times we were stuck (a few examples below)

VTune crashing machines (w/ Intel’s sampling driver  use perf)

– Worked on older kernels (pre Spectre and Meltdown patch)

Changing core frequency leads to change in uncore frequency

– Use LikWid to fix uncore frequency

– LikWid itself requires changing a kernel parameter (intel_pstate=off)

Many applications crashed for different reason

– E.g.: AMG’s iteration count is inconsistent with AVX512 optimization; NGSA

only compiled w/ GNU gcc; we fixed MACSio’s segfaults for Intel compiler

Several apps have different input datasets

– “Right” choice tricky (but req. for strong-scaling sweep of threads/processes)

– Some enforce the #thread/#proc based on domain decomposition scheme

Measuring performance metric for solver phase in apps

– For some (like CANDLE written in Python) not straightforward

13

Jens Domke

Results

What are we looking for?

Breakdown of applications requirements/characteristics

Performance metrics

Memory-bound vs. compute-bound

Power profile

If we measure the things on top, we can get:

Indications of impact of # FPUs on performance (and power)

Understanding what are the real requirements of HPC applications

– Data-centric?

Indications of what can be optimized on current hardware

– Manipulate frequency? ( similar to READEX?)

Indications of how supercomputers, as a utility is impacted

14

Jens Domke

Results – Breakdown %FP32 vs. %FP64 vs. %Integer

Following: few examples of >25 metrics (many more in raw data)

 Integer (+DP) heavy (>50%; 16 of 22), only 4 w/ FP32, only 1 mixed precision

15

Jens Domke

Results – Compare Time-to-Solution in Solver

Only 3 apps seem to suffer from missing DP (MiniTri: no FP; FFVC: only int+FP32)

VNNI may help with CANDLE perf. on KNM;

NTChem improvement unclear

KNL overall better (due to 100MHz freq. incr.?)

Memory throughput on Phi (in cache mode)

doesn’t reach peak of flat mode

(only ~86% on KNL; ~75% on KNL)

Note: MiniAMR not strong-scaling  limited comparability
16

KNL

baseline

Jens Domke

Results – Compare Gflop/s in Comp. Kernel/Solver

17

8 apps out of 18: less Gflop/s on Phi than on BDW (ignoring I/O & Int-based apps)

All apps (ignoring HPL) with low FP efficiency:

≤ 21.5% on BDW, ≤ 10.5% on KNL, ≤ 15.1% on KNM (Why?  next slides)

Phi performance comes from higher peak flop/s, Iop/s and/or faster MCDRAM?

Relative

perf. over

BDW

baseline

Absolute

Gflop/s perf.

compared to

theor. peak
20% of

theor. peak

Jens Domke

Results – Memory-/Backend-bound (VTune)

Surprisingly high (~80% for Phi)  “unclear” how VTune calculates these %
(Memory-bound != backend-bound  no direct comparison BDW vs Phi)

18

Jens Domke

Results – Frequency Scaling for Memory-Boundedness

Alternative idea:

Theory: Higher CPUfreq

 faster compute?

 compute-bound?

20 of 22 of apps below

ideal scaling on BDW

 not compute-bound

 memory-bound?

HPCG on Phi (vs. BDW):

- no improve. w/ freq.

- ≈ 2x mem. throughput

- runtime ≈ 10% lower

 memory-latency

bound (so, MCDRAM

is bigger bottleneck)
( one of Dongarra’s

original design goals)

BDW: TurboBoost (TB)

mostly useless for apps

19

Jens Domke

Results – Roofline Analysis for Verification

20

Supports our previous

hypothesis that most

of the proxy-/mini-apps

are memory-bound

Outlier: only Laghos

seems (intentionally?)

poorly optimized

Verifies our assumption

about optimization

status of the apps

( similar to other

HPC roofline plots)

KNL/KNM roofline

plots show nearly

same results (omitted

to avoid visual clutter)

Jens Domke

Results – Requirement for a “Weighted Look” at Results

Studied HPC utilization reports of 8 centers across 5 countries

Not every app equally important (most HPC cycles dominated by

Eng. (Mech./CFD), Physics, Material Sci., QCD)

Some supercomputers are “specialized”

– Dedicated HPC (e.g.: weather forecast)

For system X running memory-bound apps

– Why pay premium for FLOPS?

– NASA applies this pragmatic approach 2

2 S. Saini et al., “Performance Evaluation of an Intel Haswell and Ivy Bridge-Based Supercomputer

Using Scientific and Engineering Applications,” in HPCC/SmartCity/DSS, 2016

21

Fortran C C++ Python

Modern
Tradi-

tional

Jens Domke

Discussion on Floating-Point in HPC

FLOPS: de-facto performance metric in HPC 

– Procurement (proxy)apps highly FP64 dependent, but often memory-bound?

– Even for memory-bound apps (HPCG): Performance reported in FLOPS!!

 Community move to less FLOP-centric performance metrics?

Options for memory-bound applications:

– Invest in memory-/data-centric architectures (and programming models)

– Reduction of FP64 units acceptable  reuse chip area

– Move to FP32 or mixed precision  less memory pressure

Options for compute-bound applications:

– Brace for less FP64 units (driven by market forces)

and less “free” performance (10nm, 7nm, 3nm, …then?)

– FP32 underutilized

– Libraries will pragmatically try to utilize lower precision FPUs

• E.g.: use GPU FP16 TensorCores in GEMM (Dongarra’s paper at SC18)

– If no library  Take performance hit / rewrite code to use low precision units

22

Not much

improvement

Research use of mixed/low precision

without loosing required accuracy

Remove and design FP64-only architectures

Jens Domke

Summary & Lessons-learned & Suggestions

Lessons-learned:

IOP counting method may be misleading ( instructions instead of ops?)

Fixing uncore frequency is important

Defining/measuring memory boundedness is hard 

Intel MPI good on all Intel chips (i.e., default settings, rank/thread mapping)

Intel’s performance tools need some improvements (others: A LOT)

– SDE: CANDLE; VTune+sample driver: nodes crash; Heaptrack: NGSA, …

Suggestions:

Improved proxy-apps and better documentation (and more diversity?)

– Avoid bugs, e.g. MACSio+icc, NGSA+icc, and AMG + AVX512

– Easy choice of inputs for adapting runtime and strong- vs. weak-scaling

Community effort into one repo of HPC BMs (similar to SPEC)?

23

Jens Domke

Acknowledgements and Repo

Much more data/details in the full paper:

Double-precision FPUs in High-Performance Computing:

An Embarrassment of Riches?

Complete measurement framework and all raw data available:

https://gitlab.com/domke/PAstudy

The work was made possible by the dedicated efforts of these students

Kazuaki Matsumura and Haoyu Zhang

Keita Yashima and Toshiki Tsuchikawa and Yohei Tsuji

(w/ add. input: Hamid R. Zohouri and Ryan Barton)

of the MATSUOKA Lab, Department of Mathematical and Computer Science,

Tokyo Tech and their supervisors:

Prof. Satoshi Matsuoka, Artur Podobas, and Mohamed Wahib (+ myself).

This work was supported by MEXT, JST special appointed survey 30593/2018, JST-CREST Grant Number JPMJCR1303,

JSPS KAKENHI Grant Number JP16F16764, the New Energy and Industrial Technology Development Organization (NEDO),

and the AIST/TokyoTech Real-world Big-Data Computation Open Innovation Laboratory (RWBC-OIL).

24

https://gitlab.com/domke/PAstudy

Postdoctoral Researcher

High Performance Big Data Research Team,

RIKEN Center for Computational Science,

Kobe, Japan

Tokyo Tech Research Fellow

Satoshi MATSUOKA Laboratory,

Tokyo Institute of Technology,

Tokyo, Japan

