
A64FX – Your Path

You Must Decide!

[1]

Compiler

Jens Domke

Outline

2

 Motivation for this Study

 Measurement Methodology

 Compiler Selection

 HPC Workloads

 Discussion of Fugaku’s Results

 Summary, Conclusion, Future Work

Jens Domke

Unexpected advantage of Xeon vs. A64FX?

3

 Comparing PolyBench (s. later) against Intel Xeon E5-2650v4

 Xeon core w/ less than ½ of a A64FX core’s theoretical peak

 2mm is matmul

 A64FX (w/ fcc)

64x slower???

Reason:

Intel’s icc

applies Loop

Reordering and

other polyhedral

optimizations!

Jens Domke

Other Reports and Research Questions

4

 Performance portability (x86A64FX) not easy to achieve

 Fujitsu compilers and 4 MPI + 12 OMP threads not always best?

 A. Poenaru, “An Evaluation of the Fujitsu A64FX for HPC Applications,” Presentation in AHUG WS ISC 21; and

 B. Michalowicz et al., “Comparing the behavior of OpenMP Implementations with various Applications on two different

Fujitsu A64FX platforms,” in PEARC ’21, 2021; and

 E3SM Pathfinding on Fugaku: https://e3sm.org/e3sm-pathfinding-on-fugaku/; etc...  GNU better than FJ’s compiler

 Research Question:

 Q1: Is recommended usage model, i.e., compiler+flags and

MPI/OMP config, ideal or just a starting point?

 Q2: Is there a “silver bullet” compiler choice for A64FX?

 Q3: Can performance differences, compared to similar x86-

based hardware, be attributed to the compiler?

https://e3sm.org/e3sm-pathfinding-on-fugaku/

Jens Domke

Compilers for our Measurements

5

Simple Idea: Throw many science codes at compilers and look for trends!

Three compilers and five variations:

 FUJITSU Software Technical Computing Suite (v4.5.0):

 FJtrad (traditional mode) and FJclang (based on LLVM 7)

 -Kfast,ocl,largepage,lto additionally to benchmark’s individual flags

 LLVM Compiler Infrastructure (v12):

 native (-Ofast -ffast-math -flto=thin) and polly; with Fujitsu’s frtr for Fortran

 GNU Compiler Collection (v10.2.0):

 -O3 -march=native -flto additionally to benchmark’s individual flags

 Alternatives: Arm and HPE/Cray unavailable on Fugaku at time of writing 

Jens Domke

Testing >100 Kernels and HPC Workloads

6

 RIKEN’s FS2020 TAPP-kernels (micro kernels)

 22 kernels from RIKEN’s Priority Issue Target Applications

 OMP-para. kernels of FFB, GENESIS, NICAM, QCD, etc.; Target: 1 CMG

 Polyhedral Benchmark suite (in short, PolyBench)

 30 single-threaded, simple scientific kernels written in C

 Input sizes [MiniExtraLarge] to target diff. memory levels (we use Large)

 TOP500 benchmarks: HPL and HPCG (default version)

 Used by community for world-wide supercomputer ranking

 Additionally: BabelStream and Dlproxy (GEMM-based convolution)

Jens Domke

Testing >100 Kernels and HPC Workloads

7

 Exascale Computing Project (ECP) Proxy Applications

 Used for procurement of exascale systems by HPC centers in USA

 Version 1.0 contains 12 workloads (we excluded CANDLE)

 RIKEN CCS’ Fiber Miniapp Suite

 8 proxy apps used in procurement of Fugaku (we excluded NGSA)

 Represent the priority areas of the Japanese government

 SPEC Benchmarks (CPU 2017[speed] V1.1 & OMP 2012 V1.1)

 Widely accepted benchmark set for industry and HPC vendors (use train)

 Single-threaded: CPU[speed] Integer

 OMP-parallelized: CPU[speed] Floating Point and SPEC OMP

Jens Domke

Overview of our 55 traditional HPC Workloads

8

Jens Domke

Measurement Methodology and Environment

9

 2-stage approach for each BM/compiler combination

 Check benchmark for strong-scaling runs ( none for MiniAMR/XSBench)

( important for fair comparison!)

 Identify kernel/solver section  wrap with additional instructions for timing

 Find “optimal” #MPI + #OMP configuration for each benchmark+compiler

(try under-/over-subscr.; each 3x runs; “best” based on time, or Gflop/s, etc.)

 Run 10x of “best” configuration for lowest time-to-solution metric

 Single-node experiments on Fugaku

 Disabled power-saving features, but otherwise default env variables
(exc. SPEC: XOS_MMM_L_PAGING_POLICY=demand:demand:demand XOS_MMM_L_ARENA_LOCK_TYPE=0)

 Rank & thread placement (spread & close, resp.) controlled by Fujitsu MPI

 Benchmark files cached to first-layer storage (SSD shared by 16 nodes)

Jens Domke

Results for FS2020 Micro Kernels

10

 Gain Δ = ൗ
𝑇𝐹𝐽𝑡𝑟𝑎𝑑

𝑇𝑋 − 1 colored in range [-1 , +1]; Bold name: ≥2x speed-up

 Prog.lang in [] after name; Run config. [#MPI | #OMP] in headline or in cells

 Dark pink: unsolvable

compiler/runtime error

 Fjtrad w/ mostly

better results

 GNU beats Fjtrad

in 4 tests but also

runtime errors (6x)

 Using always “best”

compiler  17% avg.

runtime reduction

 abs.  relative 

Jens Domke

Results for PolyBench

11

 PolyBench with Large

input (≈25MB mem.)

 LLVM+Polly: best

results (followed by

FJclang)

 FJtrad worst option

exc. in 4 cases

 Highlights:

 Over 250.000x

speedup for mvt

 Median speedup

of 3.8x by using

“best” compiler

Jens Domke

Results for x500, Babel, ECP, Fiber

12

 Surprising ≈5% gain for HPL (LLVM or FJclang) despite main time in SSL2

 Same for DLproxy (matmul convolution; SSL2) but even higher gain w/ GNU

 GNU: 51% runtime

reduction in stream

( eq. to higher GB/s)

 For ECP apps use

LLVM or GNU and

for Fiber apps use

Fujitsu’s compiler

 Avg. speedup: 1.65x

(median 1.09x) with

max. 6.7x in XSBench

 [4 | 12] rarely best option

Jens Domke

Results for SPEC CPU

13

 SPEC int: FJtrad better than clang-based, but GNU outperforms all others

 Likely result of GNU’s prevalence in embedded space and Arm’s

continued investments into GNU compilers (see: https://community.arm.com/developer/tools-

software/tools/b/tools-software-ides-blog/posts/gcc-10-better-and-faster)

 SPEC float: GNU is

worst option and

most are dominantly

written in Fortran

( no real benefit

from LLVM12

except LTO?)

 “Real” flang (not F18)
(eg. https://github.com/flang-

compiler/flang) might

improve situation

https://community.arm.com/developer/tools-software/tools/b/tools-software-ides-blog/posts/gcc-10-better-and-faster

Jens Domke

Results for SPEC OMP

14

 Similar to SPEC CPU float: GNU is worst exc. for kdtree (16.5x speedup)

 Average time-to-solution improvement of 49% in SPEC CPU and 2.5x

speedup in SPEC OMP with “best” compiler (over FJtrad)

 Median improvement across both SPEC suites is 14%

 Many of SPEC benchmarks don’t scale to 48 cores (eg. full A64FX)

(biggest “offender”

is SPEC CPU’s

imagick with sweet-

spot at only 8 OMP

threads)

Jens Domke

Summary & Conclusion

15

 Across all 108 benchmarks and realistic workloads: median runtime

improvement of 16% is possible (simply by selecting right compiler)

 Performance discrepancy for PolyBench solved by switching from the

FJtrad to LLVM 12 compiler, but otherwise polly seems rarely useful

Revisit initial questions:

 A1: recomm. usage model of 4 ranks and 12 threads often suboptimal

 A2: no “silver bullet” compiler for A64FX (yet)

 Dep. on situation, but some hint: Fujitsu for Fortran codes, and GNU for integer-

intensive apps, and any clang-based compilers for C/C++

 A3: Twitter summary: “if Xeon is 70x faster than A64fx, suspect the compiler”

Recommendation:

 Install & test all avail. compilers, and explore other rank/thread mappings!

Jens Domke

Future Work

16

 Anyone interested with access to an intern/student to continue this?

 Testing Arm compilers

 Reviewer (Arm employee) offered help

 Testing HPE/Cray compiler

 In-depth analysis on reasons for performance difference?:

 SVE, loop transformations, prefetcher, cache behavior, etc.

 Automatic compiler-flag tuning for all Fugaku workloads

 Eg. https://github.com/ctuning/ck/wiki/Compiler-

autotuning#Autotuning_LLVM_flags

Jens Domke

Open-Source & Acknowledgements

17

 Reproducing our data? Doing your own analysis?

 Use our framework:

https://gitlab.com/domke/a64fxCvC or

This work was supported by

 New Energy and Industrial Technology Development Organization (NEDO); and

 Japan Society for the Promotion of Science KAKENHI Grant Number 19H04119

https://gitlab.com/domke/a64fxCvC

Jens Domke

Job/Collaboration Opportunities

18

 Collaborations and job opportunities:

 Check out our research teams and open positions:

https://www.riken.jp/en/research/labs/r-ccs/ and

https://bit.ly/3faax8v

 Internship/fellowship for students (BachelorPhD):

 Fellowship: https://www.riken.jp/en/careers/programs/index.html

 Internship: https://www.r-ccs.riken.jp/en/about/careers/internship/

 Supercomputer Fugaku:

 Apply for node-hours:

https://www.r-ccs.riken.jp/en/fugaku/user-guide/

 Interactive, virtual tour:

https://www.r-ccs.riken.jp/en/fugaku/3d-models/ and

https://www.youtube.com/watch?v=f3cx4PGDGmg

https://www.riken.jp/en/research/labs/r-ccs/
https://bit.ly/3faax8v
https://www.riken.jp/en/careers/programs/index.html
https://www.r-ccs.riken.jp/en/about/careers/internship/
https://www.r-ccs.riken.jp/en/fugaku/user-guide/
https://www.r-ccs.riken.jp/en/fugaku/3d-models/
https://www.youtube.com/watch?v=f3cx4PGDGmg

Jens Domke

Figure sources

19

 [1] https://www.starwars.com/news/8-great-life-teachings-from-yoda

