
Faculty of Computer Science Institute for Computer Engineering, Computer Architecture

Jens Domke (jens.domke@tu-dresden.de)
Tel. +49 351 - 463 – 38783
Faculty of Computer Science (APB 1046)
Nöthnitzer Straße 46, 01187 Dresden, Germany

“Dresdner Elbflorenz bei Dämmerung” by MalteF,
used under CC-BY-SA-3.0-DE / Cropped from original

Increasing Fabric Utilization with Job-Aware Routing

The InfiniBand fabric of an HPC-system is a shared resource for
simultaneously running applications. The communication performance of these
scientific codes depends heavily on the used routing algorithm. Many of the
oblivious routing algorithms in the InfiniBand subnet manager [1] optimize for
global path balancing which is suboptimal in a multi-job environment. An
alternative approach is to attribute as much physical network components
(links, switches) as possible to each multi-node application. This can be
accomplished by our job-aware DFSSSP [2] routing and Slurm extension [3].

Introduction

Large HPC-systems at national labs and universities are usually used by many
users running a diverse set of serial and parallel applications (differ in node
count, runtime, and communication pattern, etc). Our intended optimizations
are only relevant to multi-node jobs using more than one IB switch in the fabric.
We analyze the job history of the Taurus HPC-system (494 compute + 15 I/O
and admin nodes in three
“full” fat-tree islands; using 52
36-port FDR IB switches), see
statistics of March 2015 on the
right. Two facts are surprising:

 a) only 66.8% (avg.) of nodes
 are used by multi-switch jobs
 b) a large number of small jobs
 (size range: 2-18 nodes) is
 unnecessarily distributed
 over multiple switches.

Multi-User/Multi-Job HPC System

We would like to thank the colleagues from Mellanox and SchedMD, and our colleagues of
the ZIH, TU Dresden, for the stimulating discussions about routing optimizations and their
help analyzing the job history of the 509-node Taurus HPC-system, located at TU Dresden.

Acknowledgement

Improvement of Network Metrics for a Multi-Job HPC Environment

We designed a program which
analyzes the size and location of
running jobs and triggers a rerouting
of the fabric (via OpenSM) to optimize
the path balancing. This program will
identify all running multi-node jobs
which have their compute nodes
connected to more than one switch.
The detailed operational steps are:
 while (TRUE):
 query squeue for all running jobs;
 get topology (node->switch map);
 filter multi-node, multi-switch jobs;
 if (job-to-node mapping changed):
 write new job-to-node to disk;
 send SIGHUP to OpenSM;
 sleep defined #minutes;

The verification if the job-to-node
mapping has changed compared to
previous iterations ignores the actual
job IDs, since a new job (same
size/location) does not require recomputation of the forwarding tables.

Interface between Slurm and OpenSM

The deadlock-free single-source shortest-path routing, called DFSSSP [2], is
able to optimize the source/destination path-balancing globally. As a result:

 J The potential throughput of a single application running on the whole
 system is increased (especially for irregular fabric topologies);
 L Our analysis showed, that DFSSSP (and other routings implemented in
 OpenSM) fails to optimize for a multi-job environment, i.e., small/medium
 sized jobs performance suffers from high edge forwarding indices (EFI)
 and only use a subset of available links/switches in the fabric.

IB’s static and oblivious routing approach can yield in suboptimal performance
due to a mismatch between communication pattern and routing, see [4].
We extended the DFSSSP routing to make it job-aware which increase the
number of links used and decreases the EFI on a per-job basis. Therefore, we
modified OpenSM/DFSSSP to perform additional tasks in each re-routing step:

 a) read job-to-node mapping and process the LIDs in the order: LIDs of job 1,
 LIDs of job 2, … (descending order of job size) and then “unused” LIDs
 b) perform a selective edge weight update, i.e., update only if the uèv path
 will potentially be used by a multi-node job currently running on the fabric.

The figure above, showing a heat map of EFI for inter-switch links, depicts the
improvement when one island of Taurus is used by 3 synthetic, parallel jobs of
equivalent size (max. EFI decreased by 59%; #{used links} increased by 7%).

Job-Aware DFSSSP Routing

Our job-aware DFSSSP routing combined with the batch job analysis/filtering
program is capable of optimizing the routing in an IB fabric, resulting in:

 a) lower EFI on a “per job” basis (avg. max. î of 51% compared to DFSSSP)
 b) increased fabric utilization, i.e. more switches/links potentially being used.

Conclusion

[1] Mellanox OFED for Linux User Manual, Rev 2.0-3.0.0 ed., Mellanox Technologies, Oct. 2013.
[2] J. Domke, T. Hoefler, and W. E. Nagel, “Deadlock-Free Oblivious Routing for Arbitrary Topologies”, in
 Proceedings of the 25th IEEE IPDPS, May 2011, pp. 613–624.
[3] M. Jette, A. Yoo, and M. Grondona, “SLURM: Simple Linux Utility for Resource Management”, in Lecture
 Notes in Computer Science: Proceedings of JSSPP, 2002, pp. 44–60.
[4] T. Hoefler, T. Schneider, and A. Lumsdaine, “Multistage Switches are not Crossbars: Effects of Static
 Routing in High-Performance Networks,” in Proceedings of the IEEE Cluster 2008, Oct. 2008.

References

Improved
balancing
of EFIs thru
job-aware
routing
(compared
to DFSSSP)

the number of inter-switch links (ISL) used on a
“per job” basis and for the sum of jobs running
concurrently. Analyzing the effects of different
routings on realistic HPC workloads reveals:

 a) JA-DFSSSP vs. UpDn: maximum EFIî by
 a value of 8 and ISLì by 66 on avg. per job
 b) JA-DFSSSP vs. DFSSSP: max. EFIî by
 a value of 50 and ISLì by 64 on avg. per job
 c) avg. boost of ISL by JA-DFSSSP is 10% (6%)
 considering all concurrently running jobs
 compared to DFSSSP (and Up/Down)
 d) max. ISLì / EFIî was 19%/51% (16%/21%)

è This indicates a noticeable communication
 performance improvement thru JA-DFSSSP.

Our job-aware DFSSSP (JA-DFSSSP) routing
is designed to increase the IB fabric utilization
of an HPC-system, which is used by many
users for varying workloads. The figure to the
right compares our JA-DFSSSP to the
following two IB routing algorithms:

 a) Up*/Down* routing, a common choice
 in production HPC-systems (incl. Taurus)
 b) the “default” DFSSSP routing, as
 implemented in OFED’s OpenSM v3.3.18

For the analysis we used the March 2015’s
workload (job size/locality) of the 509-node
HPC-system Taurus, located at TU Dresden.
We compare edge forwarding index (EFI), and

