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Abstract—In order to come close to peak performance, accel-
erators like GPUs require significant architecture-specific tuning
that understand the availability of shared memory, parallelism,
tensor cores, etc. Unfortunately, the pursuit of higher perfor-
mance and lower costs have led to a significant diversification of
architecture designs, even from the same vendor. This creates
the need for performance portability across different GPUs,
especially important for programs in a particular programming
model with a certain architecture in mind. Even when the
program can be seamlessly executed on a different architecture,
it may suffer a performance penalty due to it not being sized
appropriately to the available hardware resources such as fast
memory and registers, let alone not using newer advanced
features of the architecture.

We propose a new approach to improving performance of
(legacy) CUDA programs for modern machines by automatically
adjusting the amount of work each parallel thread does, and
the amount of memory and register resources it requires. By
operating within the MLIR compiler infrastructure, we are able
to also target AMD GPUs by performing automatic translation
from CUDA and simultaneously adjust the program granularity
to fit the size of target GPUs.

Combined with autotuning assisted by the platform-specific
compiler, our approach demonstrates 27% geomean speedup on
the Rodinia benchmark suite over baseline CUDA implementa-
tion as well as performance parity between similar NVIDIA and
AMD GPUs executing the same CUDA program.

I. INTRODUCTION

Accelerators like GPUs remain the hardware target of choice

for performance-critical software. Achieving high performance

on these accelerators requires programmers to effectively

leverage a peculiar programming model, most often exposed as

C++ language extensions such as CUDA for NVIDIA GPUs

and ROCm for AMD. While the community has developed

alternative methods to portably program GPUs, including: a

high-level block programming model in Triton [1], automatic

mapping of C++ code onto GPUs [2], NumPy-style abstractions

with varying degree of automated scheduling in JAX [3], TC [4],

and TVM [5]; many of the performance-critical scientific

programs, including these very portability frameworks, remain

written in CUDA.1

While the CUDA programming model and syntax have

remained relatively stable over time, the underlying GPU

hardware has evolved significantly, adding many new features

and instructions. For example, earlier versions of programmable

NVIDIA GPUs used “half warps” of 16 threads for scheduling

and had a limitation of 1024 threads running concurrently

on a hardware unit while modern GPUs use “full warps” of

32 and allow up to 2048 threads per hardware unit. Similar

changes can be observed in the amount of available low-latency

memory and registers. This trend is even more important when

considering GPUs of a different vendor, like AMD, which

operate in “wavefronts” of 64 threads and allow up to 4096

threads per hardware unit.

Even when GPU kernels written in CUDA appear to run

on newer NVIDIA GPUs, they may often fail to reach similar

utilization as the kernels are incorrectly sized for the target

architecture. However, this may be avoided through skillful

use of the programming model by writing CUDA programs

that adapt to different numbers of concurrent threads. But even

programs with this flexibility do not permit control of the

amount of allocated “shared” memory between several threads

in a group or the amount of registers used (which is proportional

to the number of threads). Both of these characteristics have

a dramatic impact on the overall performance. These sizing

problems are often amplified when porting a program to a GPU

of a different vendor, let alone the often non-trivial engineering

effort of porting itself.

In this paper, we propose a compiler-based mechanism to

“resize” GPU programs to a particular architecture. Taking

existing CUDA code, our compiler can control the granularity

of the program including the amount of work performed by

1In spite of various alternatives, like ROCm and SYCL [6], the CUDA
framework, a pioneer of the GPU programming model, is used in significantly
more applications due to legacy, maintenance, and network effects.
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Fig. 1. Execution structure of a GPU kernel (for a modern CUDA GPU with
32 threads per warp).

each GPU thread as well as the amount of memory and registers,

without changing the programming model.

Our work builds on and extends the Polygeist compiler [7,

8] to translate CUDA code into a target-agnostic representation

based on MLIR [9]. This representation makes multi-level

parallelism of the GPU programming model as well as “shared”

memory explicit, allowing us to change the amount of work

performed per thread and the amount of memory resources

used through the generalized “coarsening” transformation. It

also allows us to retarget the program originally written in

CUDA to work on AMD GPUs automatically.

Our approach is further connected to the backend GPU com-

piler to extract information from lower levels of the compilation

stack, in particular the number of registers used and the amount

of spilling. This enables a sort of compile-time autotuning to

filter out programs that would have catastrophic performance

penalty due to bad resource utilization. Conventional autotuning

based on actual runtimes is also available to select the best

granularity on the given hardware.

II. BACKGROUND

A. GPU Programming Model and Architecture

In this work, our inputs are programs written the CUDA

programming model and outputs are CUDA and ROCm

executables. While not the subject of this study, our system may

be adapted for other input programming models like SYCL [6]

or OpenCL [10].

1) GPU Execution Structure: Although there has been work

on different paradigms like persistent kernels [11, 12], the

traditional CUDA programming model forces the programmer

to represent computations in a hierarchical structure. Each

kernel executes a fixed number of limited threads, which are

structured in blocks in a grid, the number of which can be

variable (Fig. 1). Both the number of threads per block and

blocks per grid must be specified at kernel launch. Threads

execute in parallel in groups called warps and execution of

blocks themselves may overlap. As the size of the block (i.e.

the number of threads) is limited and must be fixed, the most

common way to scale the problem size when programming for

GPUs is by varying the number of blocks.

The GPU contains multiple Streaming Multiprocessors (SMs)

which are assigned blocks to execute. Each SM may be assigned

multiple blocks, with new blocks assigned and as blocks

terminate. SMs execute all threads in warps in lock-step, with

each thread executing the same instruction. When a warp

executes a high-latency instruction such as a memory load, the

SM can switch to executing another warp. This allows CUDA

to hide instruction level latencies.

2) Coalesced Memory Access: When threads in a warp

execute a load, the load can be coalesced, and executed as

fewer transactions to memory if it satisfies certain require-

ments (load size, stride, global offset), reducing minimized

bandwidth [13]. Although newer architectures are more lenient

on the requirements for good performance, memory locality

remains critical to best utilise memory bandwidth [14].

3) Occupancy: When blocks are assigned to SMs they

must abide by certain constraints to avoid overwhelming the

SM’s resources. These constraints include: registers per SM,

max resident threads per SM, max threads per block, max

shared memory per SM, and max shared memory per block.

On the other hand, each block requires a certain amount of

shared memory, registers, and threads to execute. Therefore, a

given kernel has a maximum number of blocks that can reside

on a single SM. The threads of blocks that occupy an SM

are called the active threads and the ratio active threads /
max threads per SM is known as a kernel’s occupancy.

While the SM has resources that limit the occupancy, it also

has a separate set of resources (known as execution resources)

that do not limit the occupancy but instead are shared by the

blocks on the SM, including: memory bandwidth, arithmetic

logic units (ALUs), and floating point units (FPUs). To achieve

the most performance out of a GPU, the active threads must

generate enough work so that they can saturate the execution

resources of the SMs and hide latency. This is a matter of

balancing per-thread workload and occupancy.

4) Performance Portability: The performance of kernels

on a different target hardware than the one the programmer

intended is hampered by the fact that the capacity of the

different occupancy-limiting and execution resources vary

between different GPU vendors and even within the same

vendor (e.g. pre-Fermi CUDA hardware had 16 threads per

warp, current ones have 32, and AMD GPUs have 64). This

variability makes it difficult to write kernels that perform

well on a variety of target hardware. The fact that dynamic

shared memory is more difficult to implement than static sized

shared memory in C/C++ CUDA programming exacerbates

the problem and kernels tend to be of a fixed granularity.

Our proposed transformations automatically vary the gran-

ularity of computation on both the block and thread level to

make best use of the available resources for a given target.

B. GPU Compilation in Polygeist/MLIR

1) MLIR: MLIR is a framework for defining and mixing

abstractions used internally by a compiler [9]. Unlike other

IR’s, it has an open set of computational primitives (called

operations) and types. MLIR provides a number of reusable

abstractions organized in dialects, which are expected to co-

120



1 scf.parallel (%bx, %by, %bz) = (0, 0, 0)
2 to (grid.x, grid.y, grid.z) {
3 %sh_mem = memref.alloca : memref<32x32xf32>
4 scf.parallel (%tx, %ty, %tz) = (0, 0, 0)
5 to (block.x, block.y, block.z) {
6 // computation using %b{x,y,z} and %t{x,y,z} ...
7 polygeist.barrier(%tx, %ty, %tz)
8 // ...
9 }

10 }

Fig. 2. Representation of a GPU kernel in Polygeist. Lines 1 and 4 represent
GPU blocks and threads. Line 3 allocates per-block shared memory. Line 7
features a thread barrier.

exist in a program and model different aspects of it. For

example, a simple GPU kernel can be expressed using:

• arith for integer and floating point arithmetic;

• memref for operations and types for memory access;

• scf for structured control flow;

• gpu for the common GPU programming model (SIMT).

Compilers built with MLIR often define additional dialects.

This mix-of-abstractions model is particularly useful for

targeting accelerators, such as GPUs, in a compiler as it

allows the compiler to reason simultaneously about host

and device code that are expressible in the same translation

unit [15]. It enables a whole range of classical optimizations

based on the static single assignment (SSA) form such as

common subexpression elimination and loop-invariant code

motion to apply across host/device boundary, and supports new

accelerator-aware transformations [8, 16].

2) Polygeist: Polygeist is a compiler for C++ and exten-

sions built with MLIR [7]. It introduced an MLIR-based

compiler abstraction for GPU barrier synchronization prim-

itives that enables GPU-to-CPU transpilation and barrier

optimization [8]. Specifically, it uses the scf parallel loop

operation to represent GPU blocks and threads, and its custom

polygeist.barrier2 operation for thread synchronisation

(equivalent to CUDA __syncthreads). One iteration of the

parallel loop corresponds to one GPU block or thread in the

kernel configuration. This does not imply that all iterations

are executed concurrently, but that they are subject to block

and warp scheduling across SMs. The parallel operation itself

does not prescribe that and merely indicates independence

of individual operations from each other. Therefore, we will

differentiate between iterations of the parallel loop and threads.

In accordance with the GPU programming model, the

barrier operation must be executed by all threads in the

synchronization scope, which is typically a block or a warp.

This is often referred to as control flow convergence since

it effectively precludes control flow to vary between threads

around barriers. In other words, control flow affecting the

barrier should not depend on thread IDs. Since Polygeist

models multiple levels of parallelism, its barrier additionally

refers to the parallel loop iterators (interpreted as thread

identifiers) for which synchronisation is required, see Fig. 2.

Despite being able to represent the GPU programming model,

Polygeist has been unable to generate efficient GPU code

2MLIR operation are prefixed with the name of the dialect, e.g. scf. or
polygeist. We omit these prefixes when unambiguous for brevity.

Fig. 3. Conventional GPU compiler treats host (CPU) and device (GPU) code
as separate translation units.

from CUDA inputs due to missing optimisations and target

information, and only focused on translation to CPUs.

C. Thread Coarsening

A GPU program can be seen as performing similar computa-

tions with a large number of threads on an even larger number

of work units so that each thread processes multiple units.

Thread coarsening, i.e. increasing the amount of units items

processed by a thread, has been used to improve performance

of GPU kernels by hiding the latency of expensive memory

access operations, first manually [17], and later automatically

in a compiler [18, 19, 20].

However, thread coarsening may have adverse effect on

performance, for example, by introducing strided memory loads

that hamper coalescing or by increasing the register pressure

and thus decreasing GPU occupancy.

III. POLYGEIST-GPU PIPELINE OVERVIEW

We extend Polygeist to provide the end-to-end GPU compiler

accepting CUDA code, performing optimization and kernel

granularity selection, and targeting both NVIDIA and AMD

GPUs. Contrary to conventional compilers that treat host

(CPU) and device (GPU) code as separate translation units

(Fig. 3), our approach keeps both parts together thus allowing

for simultaneous updates of the kernel configuration and launch

and the kernel code itself (Fig. 4).

Specifically, we inline the MLIR representation of the GPU

code into that of the CPU code while keeping it wrapped

into a region-carrying operation, as shown in Fig. 5. This

operation permits code motion across region boundary, except

for parallel- and barrier-related constructs. Contrary to

the previous inline representation of GPU kernels in MLIR via

gpu.launch [15], ours uses explicit parallel loops that are

directly amenable to loop analyses and optimizations.

After optimization on this representation, the kernel is out-

lined and processed by a target-specific pass pipeline available

in MLIR to produce a target-specific binary embedded as global

data in the IR. Remaining host code is then processed by a

target-specific pipeline to replace outlined gpu_wrappers
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Fig. 4. Polygeist keeps host (CPU) and device (GPU) code in the same
translation unit enabling host/device optimizations. Polygeist-GPU (this
work) leverages the “parallel” MLIR abstraction to re-optimize device code
and potentially re-target it to a different platform without compromising
performance.

1 // ... Host-side code ...
2 %device_mem = gpu.alloc()
3 gpu.memcpy %device_mem %host_mem
4 // ... Device-side code ...
5 polygeist.gpu_wrapper {
6 parallel %bi = 0 to grid_size {
7 parallel %ti = 0 to block_size {
8 // ... use %device_mem ...
9 }

10 }
11 }

Fig. 5. Kernel code is inlined into host code using a region-carrying MLIR
operation (highlighted), allowing for host/device code motion.

with respective GPU runtime calls, and further lowered to a

self-contained optimized binary using LLVM.

Other than the optimizations contributed in this work,

the parallel GPU representation enables a number of other

preexisting optimizations in Polygeist and MLIR, for example

elimination of barriers, code motion around barriers, memory-

to-register promotion across barriers, and parallel loop-invariant

code motion. [8]

IV. NESTED PARALLEL LOOP UNROLL-AND-INTERLEAVE

We specialize the classical loop unrolling transformation

for nested parallel loops while taking care of GPU-style

barrier synchronization. Consider first the simple sequential

loop unrolled with a factor of 2 in Fig. 6. All the statements

1 for %i = 0 to 16 {
2 A(%i)
3 B(%i)
4 }

Original

1 for %i = 0 to 8 {
2 A(%i * 2) //
3 B(%i * 2) //
4 A(%i * 2 + 1)
5 B(%i * 2 + 1)
6 }

Unrolled

Fig. 6. Unrolling a serial for loop with a factor of 2. Operations from different
original iterations are shown in different colors.

1 parallel %i = 0 to 8 {
2 A(%i * 2) //
3 B(%i * 2) //
4 A(%i * 2 + 1)
5 B(%i * 2 + 1)
6 }

Naive unrolling

1 parallel %i = 0 to 8 {
2 A(%i * 2) //
3 A(%i * 2 + 1)
4 B(%i * 2) //
5 B(%i * 2 + 1)
6 }

Unroll-and-interleave

Fig. 7. Unrolling a parallel loop with a factor of 2. Operations from different
original iterations are shown in different colors.

1 parallel %i = 0 to 16 {
2 ...
3 for %j = 0 to 32 {
4 A(%i, %j)
5 B(%i, %j)
6 }
7 ...
8

9 }

Original

1 parallel %i = 0 to 8 {
2 ...
3 for %j = 0 to 32 {
4 A(%i_0, %j) //
5 A(%i_1, %j)
6 B(%i_0, %j) //
7 B(%i_1, %j)
8 }
9 }

Unroll-and-interleave

Fig. 8. Unroll-and-interleave of a parallel loop with nested constant trip-count
control flow. Note that we can reuse the for statement.

1 parallel %i = 0 to 16 {
2 ...
3 %n = call @foo(%i)
4 ...
5 for %j = 0 to %n {
6 A(%i, %j)
7 }
8 ...
9 }

Original

1 parallel %i = 0 to 8 {
2 ...
3 %n_0 = call @foo(%i_0)//
4 %n_1 = call @foo(%i_1)
5 ...
6 for %j = 0 to %n_0 { //
7 A(%i_0, %j) //
8 } //
9 for %j = 0 to %n_1 {

10 A(%i_1, %j)
11 }
12 ...
13 }

Unroll-and-interleave

Fig. 9. Unroll-and-interleave of a parallel loop with nested variable trip-count
control flow. Note that we cannot reuse the for statement as the trip count
differs for different %is.

with side effects from the first unrolled iteration precede their

counterparts from the second unrolled iteration to preserve

the order of side effect and thus guarantee the validity of

the transformation. A parallel loop does not imply any order

of side effects between parallel iterations, only within one

iteration, which allows us to interleave the statements from

different operations arbitrarily as long as their relative order

is preserved, as in Fig. 7. In particular, we can group them to

produce an effect of unrolling each statement independently,

which is conceptually similar to loop vectorization.

A. Nested Control Flow: Unroll and Jam and Interleave

Consider now a nested for loop with a constant trip count

(Fig. 8). Straightforward unrolling of the outer loop (Fig. 9)

would replicate the nested loop, which is not always desirable

due to code size increase and additional control flow. Another

classical loop transformation, unroll-and-jam, fuses the nested

loops back together. We can further combine loop unroll-and-

jam with statement interleaving to group statements together

as before. This process can apply recursively to nested for

loops, parallel loops that have even less side effect ordering

constraints and if/else conditionals that can be treated as

loops with zero or one iterations depending on the condition.

When the trip count is not known statically, outside of the

if/else special case, we consider nested loops as single

statement and duplicate it. Note that unroll-jam-interleave can

also handle loops with varying trip count by peeling prologue

and epilogue, but we have not observed the need for it in

GPU-oriented benchmarks.
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B. Synchronization

Until now, we assumed no synchronization primitives were

present in the parallel loops. GPU programming models allow

for barrier synchronization across threads (but not blocks).

However, the programming model requires barriers to be

executed by all threads. That is, barriers cannot be nested

in control flow dependent on value varying across threads in

the same block such as the thread index or a value loaded

from memory at a thread index-dependent address. Therefore,

barriers can only be nested in control flow with conditions

identical across threads, even if the condition cannot be

determined at compile time. We leverage this information

to perform unroll-jam-interleave for loops containing barriers

nested in parallel loops that correspond to GPU threads.

As polygeist.barrier explicitly specifies the loop

induction variables which scope the synchronization, we can

generalize this to handling control flow around barriers when

unrolling any outer parallel loop that is synchronized by these

barriers. This allows the interleaving to work seamlessly when

different thread dimensions (x,y,z) are mapped to nested

parallel for loops instead of one multi-parallel3.

Consider now the body of the nested loop in the case of

interleaving, Fig. 10. The presence of the barriers requires

the transformation to preserve the relative order of statements

guarded by the barrier. This condition can be satisfied by

grouping copies of the statement coming from different

iterations together, as in Fig. 10, left. Additionally, several

barriers that end up becoming consecutive can be trivially

replaced with a single one. Conversely, if a barrier is

duplicated, e.g. when different blocks run different number of

inner loop iterations, the unroll-and-interleave for the outer

loop may become illegal, see Fig. 10, right. Therefore we do

not apply the transformation to parallel loops that correspond

to GPU blocks if they have nested control flow with conditions

not known to be constant at compile time.

C. Multi Dimensional loops

The CUDA programming model enables the programmer

to specify three dimensions in which the blocks and grid

can be partitioned in: x, y, and z. Thus, the parallel loops

that we encounter in our parallel kernel representation are

multi-parallels with 3 (or fewer) dimensions.

This raises the question of which dimensions we should

perform thread and block coarsening. We provide two ways to

specify this in our implementation. The total coarsening factor

for a multi-parallel may be specified, and Polygeist-

GPU will attempt to balance the factors across dimensions that

are not of a constant size 1.4 Another option is to explicitly

specify the x, y, and z factors.

3We refer to a parallel loop which has multiple independent iteration
values, such as the ones in Fig. 2 as a multi-parallels.

4For example, for a total factor of 16, we will coarsen the 3 dimensions
with 4, 2, and 2 respectively, whereas for 6 we will coarsen with 3, 2, and 1.

1 parallel %i = 0 to 16 {
2 ...
3 ... {
4 A(%i, %j)
5 barrier(%j)
6 B(%i, %j)
7 }
8 ...
9 }

Original

1 parallel %i = 0 to 8 {
2 ...
3 ... {
4 A(%i_0, %j)
5 A(%i_1, %j)
6 barrier(%j)
7 // barrier(%j)
8 // optimized away
9 B(%i_0, %j)

10 B(%i_1, %j)
11 }
12 ...
13 }

Successful unroll-and-interleave

1 parallel %i = 0 to 8 {
2 ...
3 ... {
4 A(%i_0, %j)
5 barrier(%j)
6 B(%i_0, %j)
7 }
8 ... {
9 A(%i_1, %j)

10 barrier(%j)
11 B(%i_1, %j)
12 }
13 ...
14 }

Illegal unroll-and-interleave (order
between A() and B() enforced by the

barrier was not preserved)

Fig. 10. Legality of unroll-and-interleave of a parallel loop with a nested
barrier. We unroll w.r.t. %i, with a barrier with a synchronisation scope
%j which may be different from %i. We preserve the barrier semantics
(and thus the transformation is legal) only if we interleave all barriers.

V. COARSENING AS GRANULARITY VARIATION

The nested parallel unroll-and-interleave transformation lets

us implement two specialized kinds of coarsening transforma-

tions, which increase the amount of work performed by each

GPU thread or block. That is, these transformations affect the

granularity of the kernel with respect to work units.

A. Thread Coarsening

Performing unroll-and-interleave on the parallel loop rep-

resenting GPU threads (lines 4-5 in Fig. 2) achieves thread

coarsening similar to prior work (subsection II-C). Since the

transformation unrolls the loop associated with barriers and

given the control flow convergence criteria on GPUs, this

transformation is always legal.

Thread coarsening increases the number of work units a

thread processes, decreases the size of the block and preserves

the number of blocks. In other words, one thread handles the

workload of several threads of the same block.

B. Block Coarsening

Performing unroll-and-interleave on the parallel loop rep-

resenting GPU blocks (lines 1-2 in Fig. 2) produces a novel

transformation, block coarsening. This transformation may

be illegal when it cannot interleave the barrier associated

with threads and would need to duplicate it instead. That is,

if the (thread) barriers are surrounded by control flow that

(transitively) depends on the block identifier. In the general

case of multiple nested parallel loops, the transformation is

illegal if it would duplicate a barrier that synchronizes another

loop than the one being unrolled.

Block coarsening increases the number of work units

processed by a block, preserves the number of threads per block

and decreases the number of blocks. Considered differently,

each thread now handles the workload of several threads from

different blocks, hence the legality requirement of non-divergent

control flow between blocks.
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1 parallel %b = 0 to %n {
2 %shared_mem = alloca(32 x f32)
3 parallel %t = 0 to 32 {
4 %v = load %global_mem[%b * 32 + %t]
5 store %v, %shared_mem[%t]

Original kernel
1 parallel %b = 0 to %n {
2 %shared_mem = alloca(32 x f32)
3 parallel %t = 0 to 16 {
4 %v_0 = load %global_mem[%b * 32 + %t * 2]
5 %v_1 = load %global_mem[%b * 32 + %t * 2 + 1]
6 store %v_0, %shared_mem[%t * 2]
7 store %v_1, %shared_mem[%t * 2 + 1]

Thread Coarsening with naive indexing destroys the coalesced access
1 parallel %b = 0 to %n {
2 %shared_mem = alloca(32 x f32)
3 parallel %t = 0 to 16 {
4 %v_0 = load %global_mem[%b * 32 + %t]
5 %v_1 = load %global_mem[%b * 32 + %t + 16]
6 store %v_0, %shared_mem[%t]
7 store %v_1, %shared_mem[%t + 16]

Thread coarsening with coalescing-friendly indexing [18] preserves coalesced
access but executes more load instructions.

1 parallel %b = 0 to (%n / 2) {
2 %b_0 = %b * 2
3 %b_1 = %b * 2 + 1
4 %shared_mem_0 = alloca(32 x f32)
5 %shared_mem_1 = alloca(32 x f32)
6 parallel %t = 0 to 32 {
7 %v_0 = load %global_mem[%b_0 * 32 + %t]
8 %v_1 = load %global_mem[%b_1 * 32 + %t]
9 store %v_0, %shared_mem_0[%t]

10 store %v_1, %shared_mem_1[%t]
Block Coarsening preserves coalesced access and executes the same number

of loads

Fig. 11. How different coarsening transformations interact with coalesced
memory access.

C. Tradeoffs between Block and Thread Coarsening

Unlike thread coarsening, block coarsening combines shared

memory allocations from different blocks, increasing shared

memory usage.5 This may improve performance in kernels that

underutilized shared memory capacity or bandwidth, but may

degrade it in kernels that used significant portions of shared

memory as it becomes the main occupancy limiter. Note that

both kinds of coarsening increase register usage per thread,

which is another occupancy limiter, but cannot be directly

controlled outside of the platform-specific compiler.

Depending on the implementation, thread coarsening may

interfere with the coalescing-friendly access pattern originally

present in the kernel by introducing strided access patterns.6

Block coarsening preserves the memory access patterns that

existed in independent blocks.

When the coarsening factor is not a divisor of the upper

bound of the parallel loop, an additional problem arises with

how to execute the remaining iterations. When performing

thread coarsening, the remaining iterations must be executed

within the same block in order to preserve in-block synchroni-

sation. However, having additional threads that execute the left

over work interferes with having workloads balanced across

the threads, ensuring full warps, and introduces complexities

from convergent branch execution. For these reasons, we limit

thread coarsening factors to only divisors of the upper bounds.

On the contrary, when doing block coarsening, we generate

an epilogue kernel which finishes the work of the remainder

of the blocks. Therefore, we extend block coarsening to any

coarsening factor, and not only divisors of the upper bound. In

5This is automatic in our flow as we duplicate the shared memory allocation.
6Coalescing still happens for strided accesses, but less efficiently as several

instructions may be issued instead of one.

section VII we will see how this flexibility in choosing factors

allows us to improve performance even further.

Since thread coarsening reduces the number of threads per

block, large coarsening factors or blocks with originally few

threads may end up running less than a warp worth of threads.

This will result in parallel thread underutilization and degraded

performance. Similarly, block coarsening reduces the number

of blocks in the grid, which may result in the kernel having less

blocks than SMs and a corresponding performance degradation.

Our preliminary observations suggests that kernels are usually

designed to leverage parallelism at block level when possible,

so more parallelism and thus coarsening opportunities can be

found at that level.7

Finally, block and thread coarsening can be combined to

combine the benefits or mitigate the drawbacks.

VI. ALTERNATIVE CODE PATHS

As the unroll-and-interleave transformations are performed

on a relatively high level of abstraction, we introduce the

concept of alternative regions in our intermediate representation

to provide support for compile-time multi-versioning. We

can then apply block and thread coarsening with different

factors to different regions so that each region captures the

same computation with different granularity. This allows us

to postpone selecting the best alternative until the point

in the compilation pipeline where a lower-level abstraction

provides sufficiently detailed information, e.g., on register

usage. Otherwise, we would have had to develop a performance

model at the high level of abstraction and commit to a largely

imprecise heuristic to chose the best coarsening factors.

Practically, alternatives are represented in a new multi-region

MLIR operation (Fig. 12). They are produced in our flow

by simply replicating the kernel body region multiple times

and applying the coarsening with different factors to different

regions. The compilation pipeline can then proceed as normal,

with each region optimized and lowered separately from the

others, until one of the following decision points is reached.

Early Pruning For Shared Memory Usage: Given that

static shared memory must be allocated upfront with sizes

known at compile time, we are able to analyze the alternatives

immediately after producing them to compute that total amount

of shared memory used. The alternatives that require shared

memory in excess of what is available on the target hardware

can be discarded at this point.

Kernel Statistics: In the parallel loop representation, we

can collect information about the number of arithmetic and

memory operations using closed-form expressions for loops,

symbolic if loop bounds are not known at compile time. In the

LLVM representation, we can additionally collect information

about the number of branch operations in the GPU control

7This is due to the limited parallelism available at the thread level. CUDA
programs have up to 1024 threads per block, whereas the number of blocks
can go up to 2

31
− 1. When one wants to write a non-trivial GPU program

that scales, they must build it to scale with the number of blocks, lest have a
fixed maximum problem size. As a result, kernels usually scale the problem
size using the number of blocks, which is what is recommended by the official
CUDA C++ Programming Guide.
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Original code
1 A()
2 B()
3 C()

↓
1. Generate alternatives

1 A()
2 alternatives({
3 B1()
4 }, {
5 B2()
6 }, {
7 B3()
8 })
9 C()

↓
(Optimizations, transformations, lowering)

↓
2. Prune ”unpromising” alternatives

early (optional)
1 A'()
2 alternatives({
3 B1'()
4 }, {
5 B3'()
6 })
7 C'()

↓
(Optimizations, transformations, lowering)

↓ (At a suitable time in the pipeline) ↓

1 A"()
2 B3"()
3 C"()

3a. Apply a heuristic and
choose one path

1 A"()
2 switch %alt_id (
3 case 0:
4 B1"()
5 case 1:
6 B3"()
7 }
8 C"()

3b. Generate code to choose
path at runtime

Fig. 12. Generic flow of alternative code paths in our compiler’s pipeline. We
introduce the alternatives MLIR operation to specify multiple code paths
that have the same effect. The programmer can apply certain transformations
or optimizations (1.) and defer choosing the best one until later in the pipeline
when a better decision can be made (2. and 3.).

flow, which are known to negatively affect performance as

control flow divergence may be realized as executing branches

one after the other with irrelevant threads masked out.

Finally, compiling the representation to binary with the

platform-specific backend, such as ptxas, provides us with

information about register usage and spilling, estimated occu-

pancy, etc. We discard alternatives that incur new spilling at

this stage since spilling on GPU puts data into local memory

that is several orders of magnitude slower than registers.

Timing-Driven Optimization (TDO) or Auto-Tuning:

Finally, alternatives that survive preliminary filtering passes

are included as independent kernels in the final binary. Our

compiler offers a “profiling” mode in which it generates

additional logic allowing one of the alternative implementations.

Each alternative can be executed one or more times on different

data to measure the average execution time, and then select

the one that performs best. The compiler can be then called

again to remove all the other alternatives and provide a single

version without additional dispatch.

TABLE I
GPUS USED FOR EVALUATION AND THEIR SPECIFICATIONS.

Consumer-grade HPC
GPU NVIDIA A4000 AMD RX6800 NVIDIA A100 AMD MI210

Compute Capability 8.6 gfx1030 8.0 gfx90a
SMs 48 60 108 104

FLOPs (f64) 0.60T 1.01T 9.75T 22.60T
FLOPs (f32) 19.17T 16.17T 19.49 22.60T

Memory Bandwidth 445 GB/s 512 GB/s 1555 GB/s 1638 GB/s
Global Memory 16 GB 16 GB 40 GB 64 GB
L2 Cache 4 MB 4MB 40 MB 16 MB
L1 Cache (Per SM) 128 KB 16 KB 192 KB 16 KB

VII. EVALUATION AND DISCUSSION

We perform three experiments to evaluate our work. First,

we demonstrate the performance improvements by combining

block and thread coarsening compared to either of these

transformation separately (Section VII-B). Second, we compare

performance of the generated code against the baseline GPU

compiler (Section VII-C). Finally, we showcase automatic

translation of CUDA code to run on AMD GPUs using compiler

representation and compare it with the baseline source-to-source

method (Section VII-D).

A. Benchmarking Setup

We use four different GPUs from two vendors in our

evaluation as outlined in Table I. Polygeist-GPU8 was compiled

against LLVM version 15 (git commit 00a1258).

We collect two kinds of time measurements: kernel mea-

surements correspond to the time of individual kernel runs,

and composite measurements correspond to the entire compu-

tational part of an application including potentially multiple

kernel launches plus the logic between them and host-device

communication.

The evaluation is performed on two benchmark suites:

Rodinia v3 [21] and HeCBench [22]. Rodinia contains 24

different CUDA benchmarks, of which 9 were excluded.9

Rodinia’s CUDA benchmarks are optimized for an old CUDA

architecture and we aim to tune them to run efficiently on

modern GPUs. HeCBench contains 400 benchmarks. We were

only able to compile 303 of them with clang. Of these, we

were able to compile and run 112 with Polygeist-GPU given

its incomplete C++/CUDA support. Initial experiments on

Rodinia use composite measurements to evaluate the overall

performance of scientific applications. In-depth analysis of

the thread and block coarsening impact relies on kernel

measurements. We verify correctness of the transformation

by comparing the outputs of all Rodinia benchmarks after

compiling with Polygeist-GPU in different configurations and

with clang.

8Polygeist-GPU has been merged into Polygeist and is available at https:
//github.com/llvm/Polygeist

9hybridsort, kmeans, leukocyte, and mummergpu use CUDA
textures, which have been deprecated and were removed from CUDA v12, and
are not supported by Polygeist. huffman, and heartwall use unsupported
features within Polygeist (virtual functions), while dwt2d, b+tree, and
srad_v2 produce non-deterministic results in baseline and likely are buggy
benchmarks.
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Fig. 13. A combination of block and thread coarsening (this work, blue
circles) systematically outperforms thread coarsening alone (orange crosses,
reimplementation of the prior work) on the A100 GPU. All measurements are
for Polygeist-GPU, with the coarsening strategy changing.

We report a median of 5 runs for composite measurements

and a median of 3 runs for kernel measurements. Measurements

with runtimes less than 0.0001s are discarded.

Timing-driven optimization (autotuning) is applied unless

specified otherwise.

B. Combining Block and Thread Coarsening

To evaluate the combination of block and thread coarsening

transformations, we contrast it with thread and block coarsening

applied separately. For this experiment, we independently

specified total factors of 1, 2, 4, 8, 16, and 32 for thread

and block coarsening. After discarding kernels with too short

runtimes, we gathered results for 181 kernel variations. Overall,

the combined coarsening achieves 11.3% speedup, thread

coarsening alone 4.4%, and block coarsening alone 8.9%.

106 of the kernels do not achieve a meaningful (> 1%)

speedup with either strategy. The remaining 75 which exhibit

a speedup in at least one strategy are shown in in Fig. 13. . In

many cases, thread coarsening alone cannot achieve the full

performance achieved by a both thread and block coarsening.

To get better insight into how these approaches differ,

let us focus on a specific benchmark—lud from Rodinia—

and investigate how kernels are impacted by the different

configurations on the A100 GPU. This benchmark had a

significant difference of performance between thread-only and

the combined coarsening approach, though thread coarsening

still achieved a speedup. Fig. 14 illustrates the runtimes of

the main lud kernel for different total thread and block

factors. We find that a combination of both was necessary

to achieve the peak performance at (block, thread) factors

of (7, 2) for a combined coarsening factor of 14. This is

particularly interesting as the best block factor of 7 is a prime!

Moreover, for same factors, block-only coarsening achieves

better performance than thread-only. The kernel originally

had 256 threads. Coarsening it with a factor of 16 or 32

fails to produce a full warp of 32 threads. This explains the

performance gap in Fig. 14 between thread coarsening factors

that create a full warp (≤ 8) and those that don’t (≥ 16).

Fig. 14. Performance of different coarsening factor configurations for the
main kernel in Rodinia/lud relative to the non-coarsened code (higher
is better). Block coarsening-only performs better than the respective thread
coarsening-only (outlined in black) and a combination of the two is required to
reach the peak performance (highlighted). Block coarsening above 26 exceeded
the maximum shared memory.

TABLE II
PROFILING DATA FOR LUD .

(block, thread) factors (1, 1) (4, 1) (1, 4)

Runtime 0.184 s 0.122 s 0.139 s

LSU utilization 51% 65% 27%
FMA utilization 24% 27% 26%

L2 −→ L1 Read 583 MB 460 MB 582 MB
L1 −→ L2 Write 267 MB 266 MB 371 MB
L1 −→ SM Read Req. 6.27 4.16 M 6.27 M
SM −→ L1 Write Req. 2.09 M 2.08 M 2.09 M
ShMem −→ SM Read Req. 41.78 M 41.62 M 12.53 M
SM −→ ShMem Write Req. 4.18 M 4.16 M 2.09 M

LSU = load/store unit, FMA = fused multiply/add unit, SM = streaming
multiprocessor, ShMem = shared memory, LN = cache of level N.

The finer granularity of adjustment permitted by block

coarsening10 allowed us to maximize performance.

To analyze how the two approaches affect the computational

characteristics of the kernel, we profiled it with NVIDIA Nsight

Compute using the configurations with (block, thread) factors

of (4, 1) and (1, 4), which have a performance difference of

roughly 14% and extracted points of interest in the profiling

data in Table II.

The data movement statistics suggest that thread coarsening

alone leads to underutilization of the shared memory and

requires more transfers between L2 and L1 caches. There

was no difference in the total data transferred from global

memory. In contrast, our block coarsening transformation was

able to make use of the underutilized shared memory and in

turn improve performance.

To gain more insight into the finer-grain control we have over

block coarsening we experimented with independently varying

the coarsening factors along the x and y block dimensions (the

lud_internal kernel uses two block dimensions). Due to

the memory access patterns in the kernel, coarsening in the

x direction preserved memory locality better and resulted in

10The factor does not need to be a divisor of the grid size (see Section V).
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better overall performance and the peak was achieved at a

factor of 9 with a speedup of 1.64× .

Fig. 15. Peak performance of the lud main kernel was achieved by combining
both block coarsening in the x dimension and thread coarsening.

Additionally enabling thread coarsening improved perfor-

mance to reach peak speedup to 1.94× at (block, thread) factors

of (2, 8). The performance variation seen in Fig. 15 supports

the need for autotuning to get around sudden performance

dips (e.g., factors (6, 2)) that are attributable to poor cache

utilization.

C. Comparison against a Mainstream CUDA Compiler

Since Polygeist-GPU and clang share the same frontend

and backend, we evaluate the impact of our optimizations by

comparing composite runtimes produced by the two compilers.

As illustrated in Fig. 16, in absence of optimization the

generated code has similar performance on different NVIDIA

GPUs regardless of the compiler thanks to the shared front-

and back-end. Two exceptions are lavaMD on the A100, and

srad_v1 reduce on the A4000 (and to a smaller degree on

the A100). A detailed analysis of the generated code indicates

that lavaMD speedup is due to Polygeist having better loop

invariant code motion with respect to GPU shared memory

allowing it to hoist multiple shared memory loads out of the

innermost compute loop, which in turn dramatically improved

the memory characteristics of the kernel. In turn, the srad_v1

reduce performance difference was due different address

computation order in the innermost loop which contains an

intensive shared memory load-store sequence. This resulted

in differences in register allocation and usage for address

computation, causing the performance difference.

Parallel optimizations described in this paper improve

performance to achieve overall speedups of 17% or 27%

depending on the GPU model. For example, gaussian

contains a kernel with a low arithmetic intensity and significant

divergence launched with block size of 16, which fails to

saturate available resources and even run on in a full warp.

Block coarsening is able to significantly improve performance

by making individual threads perform more work and thus use

more of the available resources.

1.02x 1.17x geomean

1.07x 1.27x geomean

1.02x 1.16x geomean

1.04x 1.17x geomean

Fig. 16. Polygeist-GPU (P-G) without additional optimizations yields
performance similar to baseline clang on NVIDIA GPUs. Optimizations result
in 17–27% performance increase. Transpiled to AMD GPUs, our approach
achieves a 16–17% improvement over hipify’ed CUDA compiled by clang.

1.17x 1.33x geomean

Fig. 17. Rodinia benchmarks compiled by Polygeist for NVIDIA A4000 and
AMD RX6800 and clang on A4000.
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D. Translation to AMD: hipify+clang vs. Polygeist-GPU

In order to accurately measure the impact of our flow in

NVIDIA-to-AMD translation, we need to compare against

clang as we share the backend with it. However, clang does

not support such cross-compilation. Instead, we use the hipify

source-to-source translation tool [23] provided by AMD to

rewrite CUDA to HIP (corresponding API for AMD GPUs)

before invoking clang as a baseline.

1) Ease of use: First, we compare the ease of use of

hipify+clang and Polygeist-GPU for compilation.

The first step in the hipify+clang translation flow is to run

hipify on the input CUDA source files. In this step, we also had

to run hipify on external header dependencies (some Rodinia

benchmarks depend on helper headers from the CUDA samples

provided by NVIDIA). This step is entirely unnecessary when

using Polygeist-GPU.

Hipify required some manual fixes to the source files to

enable compilation. We needed to specify missing #include

statements to the HIP runtime headers and we also had to

remove #ifdef guards from some headers. These guards

function as appropriate when the CUDA runtime headers are

used, and thus were handled appropriately by Polygeist-GPU

where the frontend compilation happens as if we are compiling

for CUDA and only at the IR level do we convert CUDA

specific constructs to their HIP counterparts. On the other hand,

when using hipify+clang, the CUDA headers must be swapped

to their HIP counterparts from the beginning of the pipeline

and more intricate usage of C/C++ preprocessor features that

depend on the CUDA header structure cannot be converted

automatically.

For both approaches, we needed to specify the new appropri-

ate command line flags to the compiler. For both hipify+clang

and Polygeist-GPU, these were specifying the target GPU, the

new HIP libraries we need to link against, and the installation

location of HIP. For Polygeist-GPU, we also add a flag to

instruct the compiler to translate to AMD.

Finally, the code can be compiled with the respective

compiler and will result in an executable for AMD GPUs.

This shows how our approach of translating target specific

code at the IR level can provide a more user-friendly process

that can proceed with little manual intervention.

2) Performance: Analogous to the previous section, we

compare three ways to compile the Rodinia benchmark suite:

(hipify+)clang, Polygeist-GPU with the parallel representation

and parallel optimizations disabled and enabled. We use this

comparison to check how well Polygeist-GPU can adapt kernels

for a different GPU architecture by a different vendor, in this

case, the AMD RX6800 and AMD MI210. The results are

presented in Fig. 16.

Our flow produces a geomean speedup of 17% (depending

on GPU) when optimizations are enabled. However, in this

case we can observe different behavior in some benchmarks

compared to the CUDA case, demonstrating how different

architectures may require different tuning configurations to

maximize performance.

To gain insight into how the performance may differ between

GPUs from different vendors, we compare the performance of

a CUDA GPU and an AMD GPU Fig. 17 with a baseline of the

performance of clang on the CUDA GPU. We use the NVIDIA

A4000 and AMD RX6800 GPUs (see Table I) which have

comparable specifications (A4000 has about 10% more single-

precision floating point compute power, while the AMD GPU

11% more memory bandwidth and 60% more double-precision

floating point compute power). The RX6800 (Polygeist-GPU)

performs 25% (geomean) better than A4000 (clang) and 9%

faster than A4000 (Polygeist-GPU).

We investigated the discrepancy in the performance of nw_*.

Both kernels have a block size of 16 and allocate 2180 bytes

per block, for a ratio of 136 bytes of shared memory per thread.

This is extremely high as, for example, the next heaviest user

of shared memory in Rodinia is lud, containing a kernel that

uses 12 bytes of shared memory per thread, which is more

inline with typical GPU workloads. Even though we generate

shared memory in our LLVM backend, when we profile the

kernel on AMD GPUs, we observe no usage of shared memory,

which indicates that the AMD backend optimizer has offloaded

this shared memory to global memory. We hypothesize that

this is due to the very small amount of L1 cache available

compared to NVIDIA GPUs (Table I), and occupancy would

be severely limited if the offloading was not done and indeed,

when we disabled it, the resulting kernel performed 15 times

worse.

The discrepancies in favor of AMD (particlefilter*,

lavaMD, hotspot3D) are due to usage of double precision

floating point arithmetic. This can be explained by the greater

compute power for this specific case available in the AMD

RX6800 compared to the NVIDIA A4000 (see Table I).

VIII. RELATED WORK

A. Thread and Block Coarsening

Thread coarsening as an optimization for GPUs was first

discussed by Volkov [17] as a manual optimization to hide

that latency. Later, Barua, Shirako, and Sarkar [18] and Magni,

Dubach, and O’Boyle [19, 20] implemented this as an automatic

transformation for OpenCL and OpenACC.

Block coarsening transformation was first proposed by

Unkule, Shaltz, and Qasem [24] and first implemented by

Stawinoga and Field [25]. However, prior work did not

discuss the legality of the block coarsening in the presence

of block-level syncrhonization. Moreover, our work is the

first to combine both thread and block coarsening, which

demonstrates compounding benefits and is simplified in our

parallel representation.

In addition, various heuristics for choosing the optimal

factors have been described [18, 20, 25], however, we were

not able to readily apply these to our combined coarsening

transformation approach and we have left this to future work.

B. Granularity Control

Certain domain specific languages (DSLs) or programming

frameworks provide control of the granularity of computations.
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Triton [1] is a programming model that provides an abstraction

for a tile and is able to seamlessly scale its granularity to tune

computation to the target hardware. Kokkos [26] and RAJA [27]

are programming models that provides a variety of parallel

abstractions such as multi-level parallel primitives and are

able to generate high-performance code for GPUs. Halide [28]

provides a way to specify computation and schedule separately,

which in a way allows for granularity control of computation

in order to best fit to the target hardware.

However, these all require the programmer to rewrite their

software in their new programming model which is often

laborious and may not be able to represent arbitrary programs.

In contrast, our solution works on existing CUDA code.

C. Translation to AMD

Hipify [23] is a source-to-source tool to translate CUDA

code to run on AMD GPUs at either the source code or abstract

syntax tree (AST) stage. Both of these representations have

drawbacks. Source-based translation fails to handle complex

language features such as macros or templates, whereas AST-

based translation does not work correctly when the preprocessor

options (e.g. #defines) are different when compiling for

AMD and CUDA. In contrast, we work at an IR level which

can solve the problems of both approaches.

OpenCL [10], SYCL [6], and OpenACC [29] all provide

a target-agnostic way to write GPU code, however they still

require a rewrite if the software is already written in CUDA.

Doerfert et al. [30] propose translating CUDA code to

OpenMP, and then using the existing OpenMP offloading

infrastructure in LLVM [31] to target different hardware such

as NVIDIA or AMD GPUs. Their usage of OpenMP as a

common parallel representation is analogous to our parallel

representation. Our approach however, makes it easier to

preserve GPU specific notions such as for example constant

device memory, synchronisation primitives, shared memory

and involve them in optimizations.

IX. CONCLUSION

GPUs are increasingly critical to HPC, especially with

recent advances in AI. However, the variety of vendors and

accordingly architectures is increasing in recent years with

many HPC systems now choosing to use AMD GPUs. This

software and hardware ecosystem presents a problem for

programmers continuously rewrite applications to keep up with

different architectures – a costly and time-consuming process!

To efficiently enable existing programs to leverage hardware-

specific parameters, we combine fine-grained thread and block

coarsening within the compiler. A compiler-based solution

can operate at a finer scale than previously possible, and have

successfully applied it to retune both CUDA code to a different

CUDA architecture and AMD architectures as well. We achieve

up to a 27% geomean performance improvement on the Rodinia

benchmark suite and were able to automatically translate it to

run on an AMD GPU without sacrificing performance. This

solution can help prevent vendor lock-in and reduces the cost

associated with porting software to different hardware.
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ARTIFACT APPENDIX

A. Abstract

This artifact contains the source code for our compiler tool

(Polygeist), the benchmarks suite we evaluated our transfor-

mation on (Rodinia + HeCBench), and scripts for automatic

compilation, execution, and evaluation. It also contains the

data set and code dependencies for the benchmark suite. We

have implemented a combined thread and block coarsening

transformation and timing-driven optimization of GPU kernels

in Polygeist/MLIR. We compare how our combined coarsening

approach fares against a traditional thread coarsening-only

approach and against a mainstream compiler (clang) on Rodinia

and HeCBench.

B. Artifact Check-List (Meta-Information)

We used three systems to conduct our experiments:

• System 1: Intel(R) Xeon(R) Gold 6252 CPU * 2, 192 GB RAM,
NVIDIA A100 PCIe 40GB, running AlmaLinux 8.4.

• System 2: Intel(R) Xeon(R) Silver 4215 CPU * 2, 384 GB
RAM, AMD MI250, running AlmaLinux 8.4.

• System 3: AMD EPYC 7302 16-Core CPU, 256 GB RAM,
AMD RX6800, NVIDIA RTX A4000, running Fedora 37.

Other information:

• Program: Rodinia and HeCBench.
• Compiler: Polygeist (our work), clang (for comparison).
• Transformations: Coarsening transformation implemented in

MLIR.
• Data set: Provided as an artifact.
• Output: Benchmark timing information and figures.
• How much disk space required?: Approximately 30GB
• How much time is needed to prepare workflow?: 1 to 6

hours (highly dependent on the compilation performance)
• How much time is needed to complete experiments?: Ap-

proximately 2 to 3 days.
• Publicly available?: Yes, listed below.
• Archived (provide DOI)?: 10.5281/zenodo.10465934

C. Experiment Summary

There are three experiments we conducted in our work:

• Experiment 1: Fig. 13: The main experiment. This compares
our combined block and thread coarsening approach against
thread coarsening, conducted on System 1.

• Experiment 2: Fig. 16: Comparison of CUDA code compiled by
our compiler against CUDA code compiled by clang conducted
on System 1 and System 3.

• Experiment 3: Fig. 16: Comparison of CUDA code translated
to HIP and compiled by our compiler against hipified HIP code
compiled by clang conducted on System 2 and System 3.
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D. Dependencies

1) Hardware Dependencies: AMD and/or NVIDIA GPU

supported by clang 16.

2) Software Dependencies: A Linux system able to build

clang 16. LLD. CUDA 11.4. CUDA 12.1. ROCm 5.3.4 (ROCm

not required for CUDA-only experiments).

E. Artifact

The combined artifact archive is available at

https://doi.org/10.5281/zenodo.10465934. It consists of

the following components:

1) Polygeist: The source code of our tool. It is publicly avail-

able at https://github.com/llvm/Polygeist (commit ba9953a08c9b)

2) Evaluation Benchmarks: Available at https://github.com/

ivanradanov/rodinia (commit a97759e7).

3) Benchmark Data Set and Dependencies: They can be

found in the combined artifact in the following directories:

data, cuda-10.2-samples, and cuda-10.2-hip-samples.

F. Installation

1) Obtaining the Code:
$ cd $HOME && git clone https://github.com/llvm/Polygeist
$ cd Polygeist
$ git checkout ba9953a08c9b
$ git submodule update --init --recursive

2) Building LLVM: We first need to build the LLVM

compiler toolchain which our tool depends on.1112

$ cd $HOME/Polygeist
$ mkdir mlir-build && cd mlir-build

The cmake configuration step depends on the GPUs available

on the system.

For CUDA:
$ CUDACXX=<path_to_nvcc-11.4> \

CUDA_PATH=<path_to_cuda-11.4> \
cmake ../llvm-project/llvm -GNinja \
-DCMAKE_BUILD_TYPE=Release \
-DLLVM_ENABLE_PROJECTS="mlir;clang;openmp" \
-DLLVM_TARGETS_TO_BUILD="host;NVPTX;AMDGPU" \
-DMLIR_ENABLE_CUDA_RUNNER=1 -DLLVM_USE_LINKER=lld

For AMD:13

$ ROCM_PATH=<path_to_rocm> \
cmake ../llvm-project/llvm -GNinja \
-DCMAKE_BUILD_TYPE=Release \
-DLLVM_ENABLE_PROJECTS="mlir;clang;openmp" \
-DLLVM_TARGETS_TO_BUILD="host;NVPTX;AMDGPU" \
-DHIP_CLANG_INCLUDE_PATH=<hip_clang_include_dir> \
-DMLIR_ENABLE_ROCM_RUNNER=1 -DLLVM_USE_LINKER=lld

For systems with both AMD and CUDA GPUs use both the

AMD and CUDA specific configuration arguments.

Finally, compile:
$ ninja
$ export MLIR_BUILD_DIR="$(pwd)"

3) Building Polygeist:
$ cd $HOME/Polygeist
$ mkdir build && cd build

The cmake configuration step depends on the GPUs available

on the system.

For a system with a CUDA GPU:
$ CUDACXX=<path_to_nvcc-11.4> \

CUDA_PATH=<path_to_cuda-11.4> \
cmake ../ -GNinja \

11Note that the linking step requires a large amount of memory. Limiting the
concurrent processes used by ninja by using -j <num_procs> can alleviate
this problem.

12Note we use an older LLVM version with a backported patch. The commit
the llvm-project repository needs to be at the exact commit as specified in
the git submodule, which will be automatically pulled using the provided
command.

-DMLIR_DIR=$MLIR_BUILD_DIR/lib/cmake/mlir \
-DLLVM_EXTERNAL_LIT=$MLIR_BUILD_DIR/bin/llvm-lit \
-DClang_DIR=$MLIR_BUILD_DIR/lib/cmake/clang \
-DCMAKE_BUILD_TYPE=Release \
-DPOLYGEIST_ENABLE_CUDA=1 \
-DCMAKE_CUDA_COMPILER=<path_to_nvcc> \
-DLLVM_USE_LINKER=lld

For a system with an AMD GPU:13 14

$ ROCM_PATH=<path_to_rocm> \
cmake ../ -GNinja \
-DMLIR_DIR=$MLIR_BUILD_DIR/lib/cmake/mlir \
-DLLVM_EXTERNAL_LIT=$MLIR_BUILD_DIR/bin/llvm-lit \
-DClang_DIR=$MLIR_BUILD_DIR/lib/cmake/clang \
-DCMAKE_BUILD_TYPE=Release \
-DPOLYGEIST_ENABLE_ROCM=1 \
-DHIP_CLANG_INCLUDE_PATH=<hip_clang_include_dir> \
-DCMAKE_CUDA_TOOLKIT_INCLUDE_DIRECTORIES=<cuda_12.1_

include_dir> \
-DLLVM_USE_LINKER=lld

Depending on the system configuration, the required vari-

ables specifying CUDA or ROCm paths may vary.

For a system with both AMD and CUDA GPUs, we

need to specify both the ROCm and CUDA specific cmake

configuration flags and environmental variables.

Finally, we execute the build step:
$ ninja

G. Experiment Workflow

1) Obtaining the Benchmarks:
$ cd $HOME
$ git clone https://github.com/ivanradanov/rodinia
$ cd rodinia
$ git checkout a97759e7

This repository includes not only Rodinia but also the

HeCBench CUDA benchmarks.

2) Obtaining Data Sets and Dependencies: These can be

obtained from the combined artifact. The data set directory

data should be put under the benchmark root directory rodinia.

Some of the benchmarks depend on the cuda samples and

their hipified version which are at cuda-10.2-samples, and

cuda-10.2-hip-samples in the combined artifact. They can be

anywhere and the path to them needs to be provided in a

configuration file (explained below).

3) Setting Up the Benchmarks: Our benchmark

repository uses configuration files in rodinia/common/

to specify the Polygeist, Clang/LLVM installations.

The config files for the systems we used are

{memkf02,memkf01,supercomp01a}.polygeist.host.make.config for

System 1, 2, and 3 respectively. The structure of the filename

must be kept the same, with the first substring in the name

representing the machine’s hostname.
The variables defined in this file are as follows:

• POLYGEIST_DIR_RELEASE The Polygeist build directory
($HOME/Polygeist/build/ in this case).

• POLYGEIST_LLVM_DIR_RELEASE The LLVM build directory
($HOME/Polygeist/mlir-build/ in this case).

CUDA specific:

• CUDA_PATH Path to the CUDA installation
• CUDA_GPU_ARCH The CUDA GPU architecture (e.g. sm_86).
• CUDA_SAMPLES_PATH_ Path to the CUDA samples (required by

some benchmarks).

AMD specific:

13The <hip_clang_include_dir> refers to the include directory of the
clang compiler provided in the ROCm installation, in our case it was the
following: /opt/rocm/llvm/lib/clang/15.0.0/include/

14Note that we must provide a cuda include path which is needed in order
to generate the CUDA to HIP translation layer. We only support CUDA 12.1
here.
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• ROCM_PATH Path to the ROCm installation.
• AMD_GPU_ARCH The AMD GPU architecture (e.g. gfx1030).
• HIPIFIED_CUDA_SAMPLES_PATH_ Path to the hipified CUDA sam-

ples.

Please see the existing config files above for examples.
4) Running the Experiments: The experiments can be

run using the scripts/run_all_gpu_benches.sh script in the
benchmark repository. Some of the options refer to the
Polygeist configurations which are defined in common/

common.polygeist.host.make.config. Refer to the paper for the
meaning of the different timing types. It accepts the following
arguments:

• Polygeist-specific

--targets List of space-separated targets to compile for and run,
supported options are AMDGPU and CUDA

--pgo-configs The Polygeist configuration(s) to use for TDO
kernel timing runs.
--pgo-prof-nruns Number of TDO kernel timing runs.
--configs The Polygeist configuration(s) to use for composite
timing runs.

• Other

--cuda-benchmarks The file specifying the CUDA benchmarks to
run.
--hip-benchmarks The file specifying the hipified CUDA bench-
marks to run.
--clang Benchmark using clang.
--hip-clang Benchmark the hipified CUDA versions using clang.
--nruns The number of composite timing runs.
--host The hostname of the machine we are running on - the
corresponding config file we defined above will be used.
--dry-run Only print out what will be done.

The script must be run from the root directory of the

benchmark repository. We strongly recommend running the

script in a tmux or screen session, especially when on a remote

machine as it takes an extremely long time to complete.

Experiment 1 (requires a CUDA GPU, roughly 34 hours):
$ cd $HOME/rodinia
$ ./scripts/run_all_gpu_benches.sh \

--targets CUDA --host <host_name> \
--cuda-benchmarks ./scripts/cuda_all_apps.sh \
--pgo-prof-nruns 3 --pgo-configs 15

Experiment 2 (requires a CUDA GPU, roughly 3 hours):
$ cd $HOME/rodinia
$ ./scripts/run_all_gpu_benches.sh \

--targets CUDA --host <host_name> \
--cuda-benchmarks ./scripts/rodinia_cuda_apps.sh \
--pgo-prof-nruns 3 --nruns 5 \
--pgo-configs 11 --configs 2 --clang

Experiment 3 (requires an AMD GPU, roughly 3 hours):
$ cd $HOME/rodinia
$ ./scripts/run_all_gpu_benches.sh \

--targets AMDGPU --host <host_name> \
--cuda-benchmarks ./scripts/rodinia_cuda_apps.sh \
--hip-benchmarks ./scripts/hip_all_apps.sh \
--pgo-prof-nruns 3 --nruns 5 \
--pgo-configs 11 --configs 2 --hip-clang

All of these will output the results in a timestamped

subdirectory in $HOME/rodinia_results/. Each subdirectory will

have a results/cmd file which contains the configuration of the

benchmarking run.

H. Evaluation (Generating the Figures)

To generate the figures from the paper, we can use the scripts

included in the benchmark repository. They will output the

generated figures in rodinia/plots/figures/.

For experiment 1:
$ cd $HOME/rodinia
$ ./scripts/plots/rodinia-kernel-alt-analysis.py \

˜/rodinia_results/rodinia_results_<timestamp>/

For experiment 2:
$ cd $HOME/rodinia
$ ./scripts/plots/rodinia.py \

˜/rodinia_results/rodinia_results_<timestamp>/

For experiment 3:
$ cd $HOME/rodinia
$ ./scripts/plots/hip-rodinia.py \
˜/rodinia_results/rodinia_results_<timestamp>/
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