
Procedia Computer Science 00 (2012) 1–9

Procedia Computer
Science

International Conference on Computational Science, ICCS 2012

Runtime Tracing of the Community Earth System Model:
Feasibility Study and Benefits

Jens Domkea, Dali Wangb

aJoint Institute for Computational Sciences, Oak Ridge National Laboratory
bEnvironmental Sciences Division, Oak Ridge National Laboratory

Abstract

The Community Earth System Model (CESM) is one of US’s leading earth system modeling frameworks, which
has decades of development history and was embraced by a large, active user community. In this paper, we first review
the software development history of CESM and we explain the general objectives of performance analysis. Then we
present an offline global community land model simulation within the CESM framework to demonstrate the procedure
of runtime tracing of CESM using the Vampir toolset. Finally, we explain the benefits of runtime tracing to the general
earth system modeling community. We hope those considerations can be beneficial to many other modeling research
programs involving legacy high-performance computing applications.

Keywords: cesm, earth system model, tau, tracing, vampir, vampirtrace

1. Introduction

The Community Earth System Model (CESM) administrated by the National Center for Atmospheric Research
(NCAR) is one leading US earth system model. The original version of CESM was created in the 1980s as the
Community Climate Model (CCM). During the next two decades it was steadily improved and was renamed to
Community Climate System Model (CCSM) after the Climate System Model components were introduced in the mid
1990s [1]. In 2004, NCAR released the third version of CCSM, which contained new versions of all component models.
In 2007, this version of CCSM (called CCSM3) was used in the Intergovernmental Panel on Climate Change (IPCC)
Fourth Assessment Report, alongside many other global climate models from different countries and institutions. In
2010, a new version of CCSM was released, and further evolved into the new Community Earth System Model (CESM).
Currently, CESM contains five major community model components, atmosphere, ocean, sea ice, land, and land ice
sheet, as well as associated data models to simulate earth systems.

Performance analysis of the CESM has been conducted along with the development of each individual physical
(atmosphere, land, ocean, etc.) and software component (coupler, parallel I/O). For example, the source code of CESM
(version 1.0), contains a general purpose timing library (GPTL) [2] and interfaces to the Performance API library
(PAPI) [3]. Herein, we present our own method, which explores the feasibility and benefits of using a runtime tracing
library to accomplish the performance analysis.

Email addresses: domkej@ornl.gov (Jens Domke), wangd@ornl.gov (Dali Wang)



J. Domke, D. Wang / Procedia Computer Science 00 (2012) 1–9 2

In the following sections, we first present an offline global community land model simulation within the CESM
framework, then we explain the detailed procedure of runtime tracing of CESM using the Vampir toolset. After that, we
design several computational experiments to explore the performance of the offline global community model simulation
on a Cray XK6. Finally, we explain the opportunities and impacts of runtime tracing to the general earth system
modeling community.

2. Offline Community Land Model Simulation within the CESM Framework

The whole system of CESM is reconfigurable, which provides a flexibility to the community to design their own
computational experiments. Herein, we reconfigure CESM into an offline global community land model simulation.
Scientifically, this configuration uses historical climate forcings to drive the active land component simulation, and
provides unique capabilities to verify and calibrate the land modeling activities with observational datasets.

The model components of the offline global community land model simulation contain a data atmosphere model,
the active Community Land Model, and stub ocean, ice, and glacier models. The data atmosphere model reads in
climate forcings to drive the active Community Land Model, version 4 (CLM4) [4]. CLM4 includes a complete
prognostic treatment of surface energy, water, carbon, and nitrogen fluxes and state variables for both vegetated and
non-vegetated land surface. Recent model development includes improved surface energy partitioning and thus water
cycling [5, 6], and an improved ability to reproduce contemporary global patterns of burned areas and fire emissions [7].
Sub-surface hydrology parameterizations have also been changed to improve prediction of permafrost dynamics [8].
The coupled biogeochemistry functionality of the carbon and nitrogen cycle of CLM4 is an optional component,
designated CLM-CN. All land modeling efforts described in this paper are performed with activated CLM-CN. The data
exchange (including mass, energy, etc.) between each of those system components is enabled by a coupler [9], which is
a software component that simplifies and expedites system integration. CESM utilizes the Network Common Data
Form (NetCDF) for model input and output. Other CESM software components include an application driver, timing
utility, parallel I/O [10], etc. CESM also provides a complex structure of shell scripts, which allow science-oriented
modelers to reconfigure, compile, build, and submit jobs in an automatic fashion. It is an extremely valuable feature for
CESM users to conduct computational experiments on a variety of high-performance computers [11]. We will show
how to enable event tracing for the CESM framework in the following section.

3. Runtime Tracing of the CESM

3.1. Gathering of Performance Data

One step in performance analysis is the gathering of performance data itself. Depending on the level of detail you
need or want to see, you may use different technics. Sampling or profiling have usually a low overhead, but have also
a lack of detail. Sampling, e.g. with CrayPat [12] or the HPCToolkit [13], allows a general overview on how many
time is spend in different functions and could reveal an estimated performance of the program sections while reading
performance counters at the sampling points.

A more accurate method is profiling, where statistical information are gathered, like number of function calls and
mean runtime of specific functions. GProf is one example for profiling the function calls of the program. Another
example is the Integrated Performance Monitoring (IPM) tool [14], which is designed to profile MPI, OpenMP and file
I/O calls. This can be combined with the analysis of PAPI counter for the program. As discussed in Section 1, the
CESM has integrated profiling methods. This has three disadvantages, the first is the programming overhead while
developing new routines or maintaining old code sections. Second, as long as not all functions are instrumented,
the information are limited. The last disadvantage is, that profiling cannot be applied on subsections of the already
instrumented source code without mayor changes in the build system or program code.

Even more information, compared to sampling and profiling, can be collected with event tracing. Instead of
recording statistical information about events in the program code, the events and associated attributes are saved. An
example is a MPI send operation with its begin and end timestamp and attributes, like communication partner, buffer
size, etc. Hence, the exact program behavior can be reconstructed and analyzed. Toolsets like Scalasca [15] and its
EPILOG trace format or TAU [16] are designed to monitor and analyze large-scale programs on a high level of detail.
A further representative for tracing tools is the Vampir framework, which uses the Open Trace Format (OTF) [17] to



J. Domke, D. Wang / Procedia Computer Science 00 (2012) 1–9 3

save the event data. We will introduce the Vampir framework in the next sections and show how we used the framework
on CESM to gather information for further performance tuning.

3.2. VampirTrace
One component of the Vampir framework [18, 19] is VampirTrace (VT). The purpose of VampirTrace and its tools

is to instrument the source code of the program and to manage the recording of events while the instrumented program
is running. VampirTrace supports several programming languages. In detail they are C and Fortran, which is important
for the tracing of CESM, and C++ and Java. The instrumentation can be done manually by the programmer, via
compiler flags or with dynamic instrumentation of the binary. A detailed explanation on how these methods work can
be looked up in the Vampir overview paper written by A. Knüpfer, et al., 2008. The fourth method of instrumentation is
the usage of the TAU instrumentor to insert the necessary function calls into the source code. We used the latter method
to be more flexible in terms of which functions or source files we want to instrument and to overcome the number of
functions in the CESM source code, which cannot be instrumented manually within a reasonable time. We will specify
this in Section 3.4. During the run of the instrumented program the recording library is responsible for processing the
events and for transmitting them to the OTF library. The OTF library saves the events as an OTF record in an event
stream. One event stream is written for each MPI process, OpenMP thread, POSIX thread and/or other thread, which is
executed on an accelerator, like GPUs or Cell’s SPEs [20].

3.3. Vampir
The Vampir framework includes a second component, which can be used to visualize the data/events gathered

during the program execution. This component can be subdivided into VampirClient and VampirServer. The server
analyzes the event streams of one or more traces simultaneously. The client puts the information of the server into
graphs. Therefore the client provides a variety of displays, like the ”Master Timeline” or the ”Communication Matrix
View”, and functionality, like zooming and filtering. We will show some of the displays in Section 4 in context with the
tracing of CESM. The general benefit of the client/server model is the capability to process trace files in parallel, i.e.
multiple server processes can be used for one or more traces. This parallel processing overcomes the challenges [18],
which are the product of the growing number of nodes, CPUs and cores of the current HPC systems.

3.4. The configuration of CESM to use VampirTrace
The user is faced with three major challenges while tracing an application. The first one is to figure out what type

of information should be collected, i.e. which information is needed for further understanding, performances analysis
and/or rewriting of parts of the application. The next challenge is the tradeoff between the amount of information
needed and the amount of data written to the trace files. In general, it is easy to gather every information one can get
from an instrumented application, i.e. by using the automatic compiler instrumentation, mentioned in Section 3.2.
But in doing so, the trace streams might grow to a non-processable size, i.e. terabytes of data per stream. The third
challenge is the runtime behavior of the application. Each traced event adds a small timeframe to the runtime [18]. A
far too detailed instrumentation on the one hand could lead to a large overhead of more than 100% for the runtime and
on the other hand could lead to a different program behavior, e.g. bottlenecks or imbalances become invisible. In the
following we will address these challenge for CESM and show how we solved the problems.

In the first place we are interested in the MPI pattern of CESM to look for computational imbalances. Additionally
we wanted to analyze the I/O behavior and the performance of the computation. To enable this, we have to change the
compiler for the CESM framework in the Macros.<casename> file:

FC := vtf90 -vt:f90 ftn -vt:mpi -vt:inst manual

CC := vtcc -vt:cc cc -vt:mpi -vt:inst manual

The default Cray compiler wrappers on the Cray XK6 are exchanged with the VT wrapper. Since the VT wrappers do
not recognize the Cray wrappers as MPI compilers without the ’-vt:mpi’ flag, it is necessary to enable MPI tracing via
’-vt:mpi’. The ’-vt:inst manual’ flag tells the VT wrapper that the source code contains manual instrumentation, i.e.
calls to the VT library, and that it is not necessary to invoke the automatic compiler instrumentation. Despite the use of
manual instrumentation, MPI calls are traced. Therefore, even without any manual instrumentation of the source code,
we see the MPI pattern of CESM. The additional tracing of I/O calls and PAPI counter (floating point operations per



J. Domke, D. Wang / Procedia Computer Science 00 (2012) 1–9 4

second, total cache misses for L2 cache, data cache accesses for L2 cache) is enabled via VampirTrace environment
variables in the env mach specific file of CESM:

setenv VT_IOTRACE ’yes’

setenv VT_METRICS ’PAPI_FP_OPS:PAPI_L2_TCM:PAPI_L2_DCA’

setenv VT_BUFFER_SIZE 512M

Supplementary, we increase the default trace buffer size (which is 32 MiByte) to 512 MiByte, so that no intermediate
buffer flush will disrupt and influence the application execution. The results of this trace configuration can be seen in
Section 4.1.1, 4.1.3 and 4.1.4 for the test case on 48 cores and in Section 4.2 for the one-year run on 240 cores.

Our next interest is the call graph of CESM and the differentiation of the components, e.g. land, atmosphere, etc.
Using compiler instrumentation for the complete CESM source code does not work. The reason is a large number of
very small subroutines, which are called millions of times. They produce too much trace data and the overhead is too
high to make a meaningful statement on the performance of CESM. The filtering capabilities of VampirTrace might
reduce the data, but the calls to the VT library are still present in the source code. Therefore, we cannot reduce the
runtime overhead as needed, refer to Section 4.8 of [18] for details. For this reason, we use the TAU instrumentation,
where we are able to prevent functions and complete source files from being instrumented. In the first iteration we used
the TAU instrumentation for the complete source code, and the profiling mode of VT, to get the number of function
calls per function. The profiling mode was enabled via the environment variable VT MODE=STAT. For the next
iteration and final trace we generated the tau.selective file to filter functions and complete source files, like the timing
routines of the GPTL library. We used the profiling mode to identify and to filter all function with more than 5, 000
calls per process. To use the tau.selective file together with the TAU instrumentation of VT, we have to change the
compiler to the following:

FC := vtf90 -vt:f90 ftn -vt:mpi -vt:inst tauinst -vt:tau -f -vt:tau tau.selective

-vt:cpp fpp -vt:preprocess

CC := vtcc -vt:cc cc -vt:mpi -vt:inst tauinst -vt:tau -f -vt:tau tau.selective

One problem was the TAU instrumentor, which produced incorrect instrumentation for Fortran code, when user-defined
macros are preset directly after the variable declaration. We solve this by using a shell script, called fpp, which calls
the preprocessor of our compiler and redirects the output to a specific file, defined by VT. Another problem were the
build scripts of CESM, which removed the apostrophes from the original VT flag: -vt:tau ’-f tau.selective’. A patch
of the VT wrappers enabled the possibility to split this flag into two flags. The wrapper composes these two flags
internally and passes them to the TAU instrumentor. In addition, we generated a VT group specification file, which
was loaded via the environment variables like before: setenv VT GROUPS SPEC vt.groups. This group specification
enables the possibility to gather all function of one component in a group with its own color, to distinguish the different
components in the trace. We will show the result of this approach in Section 4.1.2.

4. Computational Experiments and Results

In this section, we present two computational experiments. The first one is a short term (two-day) simulation with
48 cores, which provides the opportunity to investigate the computational intensity, message passing pattern, call graph,
as well as I/O pattern. The second case is a one-year simulation using 240 cores to investigate the communication and
computational changes associated with ecosystem responses along with seasonal changes.

4.1. Short-term (2 days) simulation using 48 cores
CESM contains a straightforward way to reconfigure the parallel environment, i.e. number of MPI processes and

number of OpenMP threads, for each component. The first case is designed to compare the efficiency of MPI-only
code and MPI/OpenMP-hybrid code. The result, shown in Fig. 1, reveals that OpenMP is not fully enabled in the
data atmosphere model. Thereby the overall execution time for the MPI-only case is shorter. The reason is, that one
MPI process has to initialize the same amount of data for the hybrid case, which is initialized in parallel by four MPI
processes for the other case. For the land model, the performance of both configurations looks different, but does not
vary dramatically in terms of the runtime. Since the data atmosphere model is not OpenMP parallelized, we use all 48
cores for MPI processes in all following cases. The stubs for ocean, ice and glacier are executed on one core.



J. Domke, D. Wang / Procedia Computer Science 00 (2012) 1–9 5

Figure 1: Left: Master timeline of the MPI-only case (duration: 398 s); Right: Master timeline of MPI/OpenMP-hybrid
simulation (duration: 1886 s; data atmosphere model is not OpenMP parallelized); Coloring: illustrated in Fig. 4

Figure 2: Left: MPI communication pattern of the land simulation for 24 h; Right: communication pattern of the
coupler after one time step (zoom-in to one black vertical line of the left graph)

4.1.1. Communication pattern of the MPI simulation
The left graph of Fig. 1 is the overview of the whole simulation, and the left graph of Fig. 2 shows a zoom-in

to the land model simulation. From the left graph of Fig. 1, two characteristics are obvious. First, the simulation
starts with the climate data processing at process 0, which indicates that the parallel I/O is not enabled in the data
atmosphere model. Second, the long waiting time of MPI Allreduce for the processes 12–35 is caused by the static
computational domain partitioning, which is based on the land mask. From the left graph of Fig. 2, it is clear that
the MPI communication only happens at the end of each time step (30 min time frame) via the coupler. Fig. 2, right,
shows the MPI communication pattern between two of these 30 min time frames. It is designed to enable the potential
flux exchange between land and atmosphere. Since there is no communication required for the land model driver and
biogeophysical and biogeochemical routines, the complete communication pattern is defined by the flux coupler. This
involves extensive global communications, shown in Fig. 3.

4.1.2. Call graph and function grouping
We grouped all function calls according to the source module. Fig. 4 shows the accumulated exclusive time per

function group, such as shared components, MPI, physical component (atmosphere and land), and auxiliary utilities. It
is obvious that the MPI communication time is significant. Fig. 5 shows the call graph with the inclusive time for the
function calls on root process 0. The common depiction of a call graph uses exclusive times, i.e. a bar will be drawn
when the program executes instructions of the corresponding function. We use the call graph with the inclusive times,
because we gain a general overview of the simulation, especially of the distribution into different components. From
this graph, we can see that the data atmosphere model spends most of the time on interpolating climate forcings (solar
radiation, precipitation, and surface temperature, pressure, etc.). It is evident that the major software complexity, in
terms of call stack depth, comes from the simulation time manager inside of the coupler.



J. Domke, D. Wang / Procedia Computer Science 00 (2012) 1–9 6

Average Message Size

0 KiB

40 KiB

80 KiB

120 KiB

160 KiB

200 KiB

240 KiB

280 KiB

320 KiB

360 KiB

400 KiB

440 KiB

480 KiBProcess 0

Process 3

Process 6

Process 9

Proc...s 12

Proc...s 15

Proc...s 18

Proc...s 21

Proc...s 24

Proc...s 27

Proc...s 30

Proc...s 33

Proc...s 36

Proc...s 39

Proc...s 42

Proc...s 45

P
ro

c
e
s
s
 0

P
ro

c
e
s
s
 3

P
ro

c
e
s
s
 6

P
ro

c
e
s
s
 9

P
ro

c
e
s
s
 1

2
P
ro

c
e
s
s
 1

5
P
ro

c
e
s
s
 1

8
P
ro

c
e
s
s
 2

1
P
ro

c
e
s
s
 2

4
P
ro

c
e
s
s
 2

7
P
ro

c
e
s
s
 3

0
P
ro

c
e
s
s
 3

3
P
ro

c
e
s
s
 3

6
P
ro

c
e
s
s
 3

9
P
ro

c
e
s
s
 4

2
P
ro

c
e
s
s
 4

5

Figure 3: Comm. matrix of flux coupler (from Fig. 2, right)

All Processes, Accumulated Exclusive Time per Function Group

 11,676.659 s 

 3,633.667 s 

 3,627.578 s 

125.86 s

14.958 s

11.449 s

4.353 s

<1 s

<0.1 s

<100 μs

<100 μs

CSM_SHARE

MPI

LND

UTILS

LIBC-I/O

ATM

DRV

VT_API

GLC

OCN

ICE

0 s2,500 s5,000 s7,500 s10,000 s

Figure 4: Grouping according to source module

1 CCSM_DRIVER

2 CCSM_COMP_MOD::CCSM_INIT

3 ATM_COMP_MCT::ATM_INIT_MCT

4 DATM_COMP_MOD::DATM_COMP_INIT

5 DATM_COMP_MOD::DATM_COMP_RUN

6 SHR_STRDATA_MOD::SHR_STRDATA_ADVANCE

7 SHR_TINTERP_MOD::SHR_TINTERP_GETAVGCOSZ

8

9

10

11

12

13

14

15

16

17

0 s 50 s 100 s 150 s 200 s 250 s 300 s 350 s
Process 0

Figure 5: Call graph of process 0 (inclusive time)

0 M

200 M

400 M

600 M

800 M

1,000 M

0 s 50 s 100 s 150 s 200 s 250 s 300 s 350 s

Process 0, Values of Counter "PAPI_FP_OPS" over Time

Figure 6: PAPI counter (flop/s) on root process 0

All Processes, Number of I/O Operations per File Name

Sum

<STDOUT>

drv_in

presaero.stream.txt

clm_cruncep.0.5d.stream.TPQWL.txt

/tmp/work/case/run/lnd.log.120109-161101

clm_cruncep.0.5d.stream.Precip.txt

clm_cruncep.0.5d.stream.Solar.txt

lnd_in

/tmp/work/case/run/cpl.log.120109-161101

i1850cn_cru_ctl4.clm2.r.1290-01-01-00000.nc

<STDIN>

datm_atm_in

0 k50 k

 97,992 

 42,275 

11,633

7,699

7,664

7,495

6,934

6,856

1,704

1,063

935

697

673

Figure 7: Summary of I/O statistics

4.1.3. Hardware Performance Counter
As shown in Fig. 6, the flop/s performance changes dramatically during the simulation. The simulation starts with

I/O preparation and operations. After that, we see the peak performance for the data atmosphere model, which is
≈ 1,000 Mflop/s. The peak performance of the land model simulation is around 180 Mflop/s. It is also interesting to
see that the average flop/s performance during the land model simulation is around 100 Mflop/s (see Fig. 8), which
is mainly determined by the computation of the ecosystem behavior. Further performance characteristics of the land
model can be looked up in Section 4.2, where we investigate the inter-annual changes and changes during the day.

4.1.4. I/O Activities
Fig. 7 shows the I/O statistics of the short-term simulation. From the graph it follows that the simulation uses ASCII

data files to locate the input dataset. In addition, there is a detailed logfile for each component, including atmosphere,
land, and coupler. Other than that mentioned, drv in contains the general information about the simulation, i.e. case
name, flux exchange rate, parallel environmental configuration, etc. The lnd in file contains the input filename for the
land component. The restart file for our simulation is i1850cn cru ctl4.clm2.r.1290-CN-01-0000.nc. The most I/O
operations are done via STD OUT, which is used to record the runtime status of the whole simulation. Although I/O
has been considered as one potential bottleneck of the parallel CESM simulation, our study shows that I/O is not the
bottleneck of global offline CLM simulation, see accumulated exclusive time for LIBC-I/O in Fig. 4.



J. Domke, D. Wang / Procedia Computer Science 00 (2012) 1–9 7

666 s 667 s 668 s 669 s 670 s 671 s 672 s 673 s

Spring (May 1), Process 122, Values of Counter "PAPI_FP_OPS" over Time

0 M
25 M
50 M
75 M

100 M
125 M

666 s 667 s 668 s 669 s 670 s 671 s 672 s 673 s

Summer (Aug. 1)

0 M
25 M
50 M
75 M

100 M
125 M

666 s 667 s 668 s 669 s 670 s 671 s 672 s 673 s

Fall (Nov. 1)

0 M
25 M
50 M
75 M

100 M
125 M

666 s 667 s 668 s 669 s 670 s 671 s 672 s 673 s

Winter (Feb. 1)

0 M
25 M
50 M
75 M

100 M
125 M

Figure 8: Flop/s for one day in different seasons. The performance spikes in those figures belong to the coupler.

4.2. Long-term simulation with a 240 core configuration

In this section, we design a one-year simulation to investigate the overall computation and communication ratio and
the computational intensity changes along with inter-annual changes. Our method can be described as follows: we will
make a two-month cold start run from January 1, 1850 to generate an initial restart file for the first trace run. The restart
file of the two-month run will be taken for the spring simulation (Mar. 1 – May 31). After the spring season a new
restart file for the next season will be generated. We generate traces for the remaining seasons accordingly: summer
(Jun. 1 – Aug. 31), fall (Sep. 1 – Nov. 30) and winter (Dec. 1, 1850 – Feb. 28, 1851). The experiments are designed
with the considerations of job queue policies at Oak Ridge National Laboratory, the expected trace size and our preset
512 MiByte buffer size limit for VampirTrace.

4.2.1. Communication vs. computation ratio
First of all, we look at the communication vs. computation ratio for the spring simulation. One fact is, that the ratio

of 1 : 2.73, i.e. 26.8% of the runtime was spent on communication, is not good for the complete simulation, and might
reduce the speedup while increasing the number of cores. Most of the MPI time was spent in MPI barriers in the data
atmosphere model and in context to I/O activities. Compared to this, the ratio is better, when the active land component
calculates the climate changes for April 1850. In that case only 15.1% of the runtime was spent on communication.
All the communications come from the explicit synchronizations required by the simulation time manager and shared
software component. At the current stage of the geophysics and biogeochemistry implementation (without river
routines), each land component cell could be computed independently, which would reduce the communication
overhead.

4.2.2. Computational intensity
The global offline CLM simulation adapts a static domain decomposition. Therefore, the computational domain

on each process is directly associated with a specific geographic location. Since the land system characteristics,
such as photosynthesis, have a strong relationship with the climate forcings (such as solar radiation, temperature and
precipitation, etc.), it is possible to identify the seasonal behavior changes via the computational intensity. Fig. 8 shows
the flop/s on process 122, which is associated with a deciduous forest, for a 24 h time frame, from midnight to midnight.



J. Domke, D. Wang / Procedia Computer Science 00 (2012) 1–9 8

As shown in Fig. 8, the computational intensity of ≈ 76 Mflop/s–96 Mflop/s in winter and fall is relative low
compared to ≈ 80 Mflop/s–106 Mflop/s in spring and summer. In addition the computing intensity changes along the
day, the lowest intensity is present in the wee hours and the highest intensity is present after noon. A similar trend can
be found on several other processes. This feature has the potential to provide an opportunity to identify short-term
climate extremes (like spring freeze), intensive precipitation or disturbances (fire) during the simulation. The reason is
that those events will trigger different ecological processes, which have different computational intensity. Currently, it
is common practice that monthly outputs (≈ 500 MByte each) are generated to provide information on inter-annual
ecosystem variability. The monthly outputs may ignore the impact of short-term climate extremes. Therefore, the
capability of detecting these extremes thru runtime tracing is valuable.

5. Summary and Conclusion

In this paper, we used VampirTrace to generate runtime event traces of the global offline Community Land Model
simulation within the CESM framework. Afterwards, we used Vampir to visualize and analyze those trace files. We
believe that runtime tracing is a helpful performance analysis method for the community earth system modeling,
in addition to the current profiling utility of CESM. The benefits of runtime tracing, especially with the Vampir
toolset in combination with TAU to instrument the functions, are the level of detail, which is adjustable without
modifications of the source code, and the visualization and partial automatic analysis of the trace data. The activation
of additional sources of information, like I/O tracing and hardware performance counters, during the tracing of the
simulation enables the search for bottlenecks or examination of assumptions regarding performance and bottlenecks,
see Section 4.1.1, 4.1.3 and 4.1.4.

From the performance toolset development perspective, the practice with the Community Earth System Model
provides new opportunities to enhance the functionality and robustness of the Vampir toolset, especially related to
long-term simulations of legacy HPC applications. We would not have been able to accomplish the analysis without
the enhancements of VampirTrace during the preparation of the experiments, i.e. the support for I/O tracing on the
Cray XK6 and the implementation of new flags for the VampirTrace wrapper to harmonize with the complex build
system of CESM.

From the software engineering perspective, we see the runtime overhead produced by the implementation of the
flux coupler, as well as the overhead of the timing management utilities. Considering that the computational intensity
shifts along with season changes, mainly due to the ecosystem’s responses to the climate forcings on spatial and
temporal dimensions, we may need to adapt the dynamic load balancing during the simulation [21]. Furthermore, an
OpenMP-parallelized implementation of the data atmosphere model would decrease the runtime of CESM simulations,
which are not fully coupled.

Lastly, we would like to mention that the collaboration between performance tool developers and application
developers is the key for this type of research on high-performance computers. We view this research as the start
of a long-term collaboration. Besides the above mentioned dynamic load balancing, future work will include the
performance analysis on other active components (atmosphere, ocean, ice and glacier), and a fully coupled CESM
simulation.

Acknowledgments

The authors thank the Vampir Team of the Center for Information Services and High Performance Computing
(ZIH), Technische Universität Dresden, for expertise and support during the time the tracing took place. This research
was partially funded by Terrestrial Ecosystem Sciences (TES) Program and Climate Sciences for Sustainable Energy
Future (CSSEF) Program under the Biological and Environmental Research (BER) under the Office of Science of the
U.S. Department of Energy (DOE). This research used resources of the Oak Ridge Leadership Computing Facility,
located in the National Center for Computational Sciences at Oak Ridge National Laboratory, which is supported by the
Office of Science of the Department of Energy under Contract DE-AC05-00OR22725. Oak Ridge National Laboratory
is managed by UT-Battelle LLC for the Department of Energy under contract DE-AC05-00OR22725.



J. Domke, D. Wang / Procedia Computer Science 00 (2012) 1–9 9

References

[1] J. B. Drake, I. T. Foster, Introduction to the Special Issue on Parallel Computing in Climate and Weather Modeling, Parallel Computing 21 (10)
(1995) 1539–1544.

[2] J. Rosinski, General Purpose Timing Library (GPTL): A Tool for Characterizing Performance of Parallel and Serial Applications, presented at
Cray User Group (May 2009).

[3] J. Dongarra, A. D. Malony, S. Moore, P. Mucci, S. Shende, Performance Instrumentation and Measurement for Terascale Systems, in:
Proceedings of the 2003 International Conference on Computational Science, ICCS’03, Springer-Verlag, Berlin, Heidelberg, 2003, pp. 53–62.

[4] K. Oleson, D. Lawrence, G. Bonan, M. Flanner, E. Kluzek, P. Lawrence, S. Levis, S. Swenson, P. Thornton, A. Dai, M. Decker, R. Dickinson,
J. Feddema, C. Heald, F. Hoffman, J.-F. Lamarque, N. Mahowald, G.-Y. Niu, T. Qian, J. Randerson, S. Running, K. Sakaguchi, A. Slater,
R. Stockli, A. Wang, Z.-L. Yang, X. Zeng, X. Zeng, Technical Description of version 4.0 of the Community Land Model (CLM), Tech. Rep.
NCAR/TN-478+STR, National Center for Atmospheric Research, http://nldr.library.ucar.edu/repository/collections/TECH-NOTE-000-000-
000-848 (Apr. 2010).

[5] D. M. Lawrence, P. E. Thornton, K. W. Oleson, G. B. Bonan, The Partitioning of Evapotranspiration into Transpiration, Soil Evaporation, and
Canopy Evaporation in a GCM: Impacts on Land–Atmosphere Interaction, Journal of Hydrometeorology 8 (4) (2007) 862–880.

[6] R. Stoeckli, D. M. Lawrence, G. Y. Niu, K. W. Oleson, P. E. Thornton, Z. L. Yang, G. B. Bonan, A. S. Denning, S. W. Running, Use of
FLUXNET in the community land model development, J Geophys Res-Biogeo 113 (G1).

[7] S. Kloster, N. M. Mahowald, J. T. Randerson, P. E. Thornton, F. M. Hoffman, S. Levis, P. J. Lawrence, J. J. Feddema, K. W. Oleson, D. M.
Lawrence, Fire dynamics during the 20th century simulated by the Community Land Model, Biogeosciences 7 (6) (2010) 1877–1902.

[8] D. M. Lawrence, A. G. Slater, R. A. Tomas, M. M. Holland, C. Deser, Accelerated Arctic land warming and permafrost degradation during
rapid sea ice loss, Geophysical Research Letters 35 (11) (2008) L11506+.

[9] J. Larson, R. Jacob, E. Ong, The Model Coupling Toolkit: A New Fortran90 Toolkit for Building Multiphysics Parallel Coupled Models,
International Journal of High Performance Computing Applications 19 (3) (2005) 277–292.

[10] J. M. Dennis, J. Edwards, R. Loy, R. Jacob, A. A. Mirin, A. P. Craig, M. Vertenstein, An Application Level Parallel I/O Library for Earth
System Models, International Journal of High Performance Computing Applications (IJHPCA), To Appear.

[11] D. Wang, W. Post, B. Wilson, Climate Change Modeling: Computational Opportunities and Challenges, Computing in Science Engineering
13 (5) (2011) 36–42.

[12] S. Kaufmann, B. Homer, CrayPat - Cray X1 Performance Analysis Tool, presented at Cray User Group (May 2003).
[13] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-Crummey, N. R. Tallent, HPCTOOLKIT: Tools for performance analysis

of optimized parallel programs, Concurrency and Computation: Practice and Experience 22 (6) (2010) 685–701.
[14] K. Fuerlinger, N. J. Wright, D. Skinner, Effective Performance Measurement at Petascale Using IPM, in: Proceedings of The Sixteenth IEEE

International Conference on Parallel and Distributed Systems (ICPADS 2010), Shanghai, China, 2010, pp. 373–380.
[15] M. Geimer, F. Wolf, B. J. N. Wylie, E. Ábrahám, D. Becker, B. Mohr, The Scalasca performance toolset architecture, Concurrency and

Computation: Practice and Experience 22 (6) (2010) 702–719.
[16] S. S. Shende, A. D. Malony, The Tau Parallel Performance System, The International Journal of High Performance Computing Applications 20

(2006) 287–331.
[17] A. Knüpfer, R. Brendel, H. Brunst, H. Mix, W. E. Nagel, Introducing the Open Trace Format (OTF), in: V. N. Alexandrov, G. D. van Albada,

P. M. A. Sloot, J. Dongarra (Eds.), International Conference on Computational Science (2), Vol. 3992 of Lecture Notes in Computer Science,
Springer, 2006, pp. 526–533.

[18] A. Knüpfer, H. Brunst, J. Doleschal, M. Jurenz, M. Lieber, H. Mickler, M. S. Müller, W. E. Nagel, The Vampir Performance Analysis Tool-Set,
in: M. Resch, R. Keller, V. Himmler, B. Krammer, A. Schulz (Eds.), Tools for High Performance Computing, Springer Berlin Heidelberg,
2008, pp. 139–155.

[19] H. Brunst, A. Knüpfer, Vampir, in: D. Padua (Ed.), Encyclopedia of Parallel Computing, 1st Edition, Springer, 2011.
[20] D. Hackenberg, G. Juckeland, H. Brunst, High Resolution Program Flow Visualization of Hardware Accelerated Hybrid Multi-core Applications,

in: CCGRID, IEEE, 2010, pp. 786–791.
[21] D. Wang, M. W. Berry, L. J. Gross, On Parallelization of a Spatially-Explicit Structured Ecological Model for Integrated Ecosystem Simulation,

IJHPCA 20 (4) (2006) 571–581.


