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Figure 1: Observable Bandwidth in mpiGraph for 28 Nodes of our Fat-Tree-based and HyperX-based Supercomputer

ABSTRACT
The de-facto standard topology for modern HPC systems and data-
centers are Folded Clos networks, commonly known as Fat-Trees.
The number of network endpoints in these systems is steadily in-
creasing. The switch radix increase is not keeping up, forcing an
increased path length in these multi-level trees that will limit gains
for latency-sensitive applications. Additionally, today’s Fat-Trees
force the extensive use of active optical cables which carries a pro-
hibitive cost-structure at scale. To tackle these issues, researchers
proposed various low-diameter topologies, such as Dragonfly. An-
other novel, but only theoretically studied, option is the HyperX.
We built the world’s first 3 Pflop/s supercomputer with two separate
networks, a 3-level Fat-Tree and a 12x8 HyperX. This dual-plane
system allows us to perform a side-by-side comparison using a
broad set of benchmarks. We show that the HyperX, together with
our novel communication pattern-aware routing, can challenge the
performance of, or even outperform, traditional Fat-Trees.

CCS CONCEPTS
• Computer systems organization → Interconnection archi-
tectures; • Networks → Network experimentation; Network
performance analysis; Routing protocols; Packet-switching networks.
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1 INTRODUCTION
The striking scale-out effect, seen in previous generations at the
top end of the supercomputer spectrum, e.g., the K computer with
over 80,000 compute nodes or the Sunway TaihuLight system with
over 40,000 nodes [77], is likely to continue into the far future to
tackle the challenges associated with the ending of Moore’s law.
The interconnection network, used to tightly couple these HPC sys-
tems together, faces increased demands for ultra-low latency from
traditional scientific applications, as well as new demands for high
throughput of very large messages from emerging deep learning
workloads. While the commonly deployed Clos or Fat-Tree net-
work topologies could provide the throughput, their cost structure
is prohibitive and the observable latency will suffer from the in-
creasing number of intermediate switches when scaling up the tree
levels. Furthermore, as signaling rates are headed beyond 50Gbps
(greater than 200Gbps per 4X port), “electrically-optimized”, low-
diameter topologies like the various “flies” — e.g., Dragonfly [41],
Dragonfly+ [74], or Slimfly [9] — may no longer be relevant.
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Figure 2: Two full-bisection bandwidth networks (Fig. 2a: indirect Fat-Tree topology; Fig. 2b: direct HyperX topology) and
Fig. 2c shows one of 24 racks of our 672-node supercomputer with two edge switches connecting to the 3-level Fat-Tree and
four switches for the 12x8 HyperX network (brown = rack-internal passive copper cables; gaps used for cable management)

In a future driven by co-packaged optics and fiber shuffles, the
HyperX topology [3] could be the alternative to provide high-
throughput and low network dimensionality, with the most com-
petitive cost-structure. One drawback of these direct and/or low-
diameter topologies is, however, the potential bottleneck between
two adjacent switches, usually bypassed by non-minimal, adap-
tive routing [2]. The adverse effect of static, minimal routing for a
HyperX is visualized in Figure 1. The average observable intra-rack
bandwidth for bisecting communication patterns is with 2.26 GiB/s
close to the maximum on a Fat-Tree (left), whereas this average
drops to mere 0.84GiB/s on a HyperX (middle). The cause: up to
seven traffic streams may share a single cable in the default HyperX
network configuration with minimal routing. Our non-minimal,
static PARX routing, developed for the HyperX, alleviates this is-
sue, as shown in the right-most heatmap of Figure 1, boosting the
average bandwidth by 66% to 1.39GiB/s per node pair.

In this study, we empirically quantify and analyze the viability of
the HyperX topology — so far only theoretically investigated — by
rewiring a large-scale, multi-petaflop, and recently decommissioned
supercomputer. The 1st network plane of the original system is kept
as Fat-Tree topology, while the 2nd plane is modified to facilitate our
fair comparison. We stress both network topologies with numerous
synthetic network benchmarks, as well as a broad set of scientific
(proxy-)applications, e.g., sampled from the Exascale Computing
Project (ECP) proxy applications [19] and other procurement bench-
marks used by the HPC community. To mitigate the lack of adaptive
routing, and resulting bottlenecks, in our dated generation of In-
finiBand (QDR type), we develop and test different strategies, i.e.,
rank placements and our novel communication-/topology-aware
routing algorithm. In short, the contributions of our paper are:

(1) We perform a fair, in-depth comparison betweenHyperX and
Fat-Tree using more than a dozen different HPC workloads,

(2) We develop a novel topology- and communication-aware
routing algorithm for HyperX, which mitigates bottlenecks
induced when routing along shortest paths, and

(3) We demonstrate that even a statically routed HyperX net-
work can rival or outperform the more costly Fat-Tree topol-
ogy for some realistic HPC workloads.

2 SYSTEM ARCHITECTURE & TOPOLOGIES
Here, we briefly introduce the state-of-the-art Fat-Tree, used by
many HPC systems, and the recently proposed HyperX alternative.
Furthermore, we show how we re-wired a decommissioned system
to perform a 1-to-1 comparison between these two topologies.

2.1 k-ary n-tree Topology
The k-ary n-tree topology [66], also known as Folded Clos or Fat-
Tree, has become the predominant topology for large scale com-
puting systems. This topology derives from multistage Clos net-
works [12], and has risen to dominance mainly because of its ability
to support efficient deterministic routing wherein packets follow
the same path every time from source to destination. In order to
support full throughput for uniform random traffic, a Folded Clos
must be provisioned with 100% bisection bandwidth. While this
yields a system with predictable behavior, its cost is high and often
prohibitive due to the indirect nature of this topology and increase
in required levels n for larger supercomputers. Figure 2a shows a
small 4-ary 2-tree. To reduce cost, large systems can be deployed
with less bisection bandwidth by oversubscribing the lowest level
of the tree [47]. For example, a 2-to-1 oversubscription cuts the
network cost by more than 50% however reduces the uniform ran-
dom throughput to 50%. The benefit to the Folded Clos is that all
admissible (non-incast) traffic patterns theoretically yield the same
throughput [66], assuming the routing is congestion-free [30].

2.2 HyperX Topology
Ahn et al. introduced the HyperX topology [3] as a generaliza-
tion to all flat integer lattice networks where dimensions are fully
connected, e.g., HyperCube, Flattened Butterfly, see [2, Sec. 3.3]
for details. Since the HyperX is a superset of these topologies, the
remainder of this paper will use the term HyperX, as the methodolo-
gies presented herein apply to all HyperX configurations. Figure 2b
depicts a full-bisection bandwidth, 2-dimensional HyperX. The
HyperX methodology is designed as a low-diameter, direct net-
work to fit with high-radix routers. One of the primary benefits of
HyperX is that it can fit to any physical packaging scheme as each
dimension can be individually augmented to fit within a physical
packaging domain, e.g., a chassis, a rack, a row of racks, etc. A
HyperX network is designed for uniform random traffic being the
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average case. A HyperX network designed with only 50% bisection
bandwidth can still provide 100% throughput for uniform random,
assuming appropriate message routing, and hence drastically re-
duce overall network costs. This advantage in cost structure was
shown by Ahn et al., as well as in subsequent studies [6, 40, 56].
However, unlike the Folded Clos, even though 100% throughput
is achievable with uniform random traffic on a HyperX, the worst
case traffic will only achieve 50% throughput [13].

2.3 HPC System Layout and Modifications
Currently, no large-scale deployment of the HyperX topology exists,
hence we have to build one ourselves. Fortunately, the Tokyo Insti-
tute of Technology decommissioned their TSUBAME2 supercom-
puter recently, and allowed us to modify its topology to construct
a HyperX prototype. The system’s original configuration, before
being shut down, consisted of over 1,500 compute and auxiliary
nodes — totalling a theoretical peak performance of ≈6 Pflop/s —
interconnected by two QDR InfiniBand-based (IB) full-bisection
bandwidth Fat-Trees [24]. Each compute node is equipped with
two hexa-core Intel CPUs (Westmere EP generation) and at least
4GiB RAM per core, but primarily gains the compute capability
from GPU acceleration1.

Both IB networks are constructed from 36-port Voltaire 4036 edge
switches (two per rack per network plane), a total of 12 Voltaire
Grid Director 4700 switches, and thousands of QDR active optical
cables (AOC) between the edge and director switches. The original
full-bisectional 18-ary 3-trees were undersubscribed, i.e., each edge
switch hosts only 15 compute nodes (instead of 18). Tearing down
one of the two network planes and re-wire it as HyperX topology,
as indicated in Figure 2c, theoretically allows for an accurate and
fair comparison of Fat-Tree vs. HyperX, since both physical IB
network cards are attached to CPU0. Unfortunately, our InfiniBand
hardware will be a weak point of our HyperX topology.

The HyperX was intended to be used and initially proposed
together with the Dimensionally-Adaptive, Load-balanced rout-
ing algorithm (DAL). Our dated QDR-based InfiniBand hardware
only supports flow-oblivious, static routing — usually along short-
est paths — and entirely lacks adaptive routing (AR) capabilities,
see [34, Sec. 18.2.4.3]. Hence, to alleviate the lack of AR and improve
throughput especially for adversarial traffic, see previous Sections 1
and 2.2, we develop two mitigation strategies in Section 3.

In amulti-months effort, we constructed the largest possible HPC
system — given our hardware constraints — with HyperX network
resulting in a 12x8 2D topology with 7 nodes per switch, and slightly
over half-bisection bandwidth, i.e., 57.1% to be precise. The 672
compute nodes and 96 IB edge switches, composing our HyperX
network, are distributed over 24 compute racks (plus one auxiliary
rack), giving our new system theoretically a computational peak
performance of 2.7 Pflop/s (double-precision).

Initially, we planed a larger system, but various challenges im-
peded it: (1) extracting >900 AOCs from under a raised floor resulted
in 58 broken or degraded cables; (2) the aged compute nodes suffer
increased failures rates, limiting available spares (we replaced 107
nodes prior/during benchmarking); and (3) retrofitting an existing

1 Facility power constraints, for running old and new HPC system simultaneously,
prohibited us from using the GPUs, which should not impede our network benchmarks.

rack/node layout limits design choices. Nevertheless, we rebuilt
one entire server room (of two), hosting all 24 racks, while keeping
the original Fat-Tree network intact. Spare AOCs, after wiring the
HyperX, are used to replace degraded cables in both topologies2.
Unfortunately, the number of disabled cables in both networks still
exceeds available spares. Consequently, 15 (out of 684) AOCs are
absent from a full 12x8 HyperX, while our 204-switch Fat-Tree is
missing 197 AOCs (or links inside the director switches) from a
total of 2662. However, the Fat-Tree’s undersubscription should
limit the overall performance degradation. Hence, we end up with
two slightly imperfect networks for the comparison in Section 5.

3 BOTTLENECK MITIGATION FOR HYPERX
Similar to other low-diameter topologies, such as Dragonfly or Slim-
fly, the HyperX relies on AR to avoid oversubscribing the shortest
path. Without it, see Figure 1, the throughput is severely limited.
Hence, we develop two mitigation strategies for our QDR IB tech-
nologies which only allows for static and flow-oblivious routing.

3.1 Application-to-Compute Node Mapping
The most obvious solution to the bottleneck problem, induced by
static routing, is to spread out the allocation of nodes for an ap-
plication, such that node-adjacent switches are either not directly
connected, or only a subset of nodes of each switch is used. Ideally,
one would perform a topology-/routing-aware rank mapping, see
for example [1, 33]. However, these strategies are impractical in pro-
duction environments, due to limited availability of idle resources.
Since we do not recommend to deploy HyperX without adaptive
routing, we only use a simple random assignment of ranks to nodes
in this study to test if it mitigates the bottleneck. The disadvantage
of this approach is an increased latency for small messages.

3.2 Non-Shortest Path Routing for HyperX
An alternative to the node mapping is altering the traffic flow to
utilize more bandwidth of the network by using non-minimal paths,
similar to how AR for Dragonfly topologies operates [20, 41]. How-
ever, statically routing along non-shortest paths is complicated in
IB, due to the destination-based forwarding scheme employed by IB
switches [34, Sec. 3.4.3]. Assume, for example, a triangle of switches
A, B, and C with one node per switch, then theoretically A’s node
can send traffic to C’s via B, but at the same time B’s node cannot
send traffic to C’s via A, because packets would get stuck in an
infinite forwarding loop between A and B. Hence, we require a
novel routing algorithm for HyperX and communication scheme
for applications which satisfies the following four criteria:

(1) Small messages are routed along shortest paths;
(2) Large messages utilize non-shortest paths;
(3) For all node pairs the choice between (1) and (2) exists; and
(4) The routing is loop-free, fault-tolerant and deadlock-free.

While the first three criteria obviously aim for low latency and
increased throughput, criterion (4) is required due to our imperfect
HyperX deployment, see Section 2. The deadlock-freedom demand
became essential after initial tests with OpenSM’s SSSP routing [63].
The next Sections 3.2.1–3.2.4 detail how we accomplish our goal.
2We filtered out cables by creating fabric traffic and investigating its port/link error
counters, e.g., one filter criterion was >10,000 symbol errors in a short time period.
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Figure 3: Illustrate quadrant-based partitioning of a 2D
HyperX to achieve minimal & non-minimal routing via
LMC-based multi-pathing; See Sec. 3.2.1 for more details

3.2.1 Concurrently Forwarding alongMinimal &Non-Minimal Paths.
As the previous thought experiment examplifies, it can be impos-
sible — with out-of-the-box InfiniBand routing mechanisms — to
accomplish criteria (1)–(3) for the general case, i.e., larger topolo-
gies comprised of multiple switches. However, IB enables up to
128 virtual destinations, called local identifier (LID), per physical
port of host channel adapters (HCA), see [34, Sec. 4.1.2]. The LID
mask control (LMC) defines how many (up to 127) additional LIDs
are assigned besides the base LID0. The subnet manager, usually
OpenSM, then calculates the forwarding tables as if each (virtual)
LID would be a physical endpoint in the fabric [34, Sec. 3.5.10].

We utilize this multi-destination feature of IB to construct a
topology-aware, static routing for our rewired supercomputer with
2D HyperX topology. Our novel approach is generalizable to higher
dimensions, however due to the prototypic nature of it3, we limit
ourselves to only 2D HyperX topologies with even dimensions.

Assuming, we virtually divide the 2D HyperX into four quad-
rants Q0–Q3, see Figure 3a, and each HCA/port is configured
with four destination LIDs (by setting LMC = 2 and indexed via
LID0, . . . , LID3), then the calculated paths towards them may be
partially or fully disjoint4. Unfortunately, available static routing
for IB will only calculate routes along the minimal paths in the
network, unless it serves the purpose of deadlock-avoidance, e.g.,
as performed by Up*/Down* [72] or Nue routing [16]. Hence, to
enforce the traffic forwarding along non-minimal paths, a routing
algorithm must be topology-aware and/or temporarily disregard
links which otherwise contribute to a minimal path length.

Our approach for this challenge is to virtually remove some ad-
verse links during the path calculation. Let’s illustrate this approach
through an example before generalizing it for the entire HyperX:
Assuming, the routing iteratively processes the destination LIDs
and the “currently” processed LID0 belongs to quadrant Q1, see Fig-
ure 3b. Now, if we virtually remove all network links within the left
half of the HyperX, then it will cause all “shortest” paths originating
from Q0 or Q1 to traverse through Q2 and/or Q3. The benefit is an
increase of non-overlapping paths, i.e., from at most two to D1

2 , if
the 1st dimension of the HyperX is larger than 4. In this example,
we gain three additional paths. Large messages should utilize the
increased link bandwidth to avoid creating bottlenecks on direct

3Future HyperX deployments use AR, making our static routing prototype obsolete.
4Statement depends on applied routing and omits switch-to-HCA sections of the path.

Table 1: Valid choices of virtual destination LIDx depending
on message size ( s=source; d=destination; | stands for or );
Sec. 3.2.4 for how we distinguish between small and large

(a) x for small messages

s
d Q0 Q1 Q2 Q3

Q0 1 | 3 1 0 | 2 3

Q1 1 1 | 2 2 0 | 3

Q2 1 | 3 2 0 | 2 0

Q3 3 1 | 2 0 0 | 3

(b) x for large messages

s
d Q0 Q1 Q2 Q3

Q0 0 | 2 0 0 | 2 2

Q1 0 0 | 3 3 0 | 3

Q2 1 | 3 3 1 | 3 1

Q3 2 1 | 2 1 1 | 2

links in the left half. In contrast, if another virtual LID1 is attached
to the same switch in Q1 and the link removal is applied to the
right half, then all paths towards LID1 will be minimal, exemplified
in Figure 3c. However, paths ending in Q2/Q3 may detour.

To generalize this example, we define the following four rules
when processing a given destination LID in the routing engine:
(R1) given LID ≡ LID0 ⇒ remove all links in left half
(R2) given LID ≡ LID1 ⇒ remove all links in right half
(R3) given LID ≡ LID2 ⇒ remove all links in top half
(R4) given LID ≡ LID3 ⇒ remove all links in bottom half

and any communication traffic injected into the network, which
is addressed to arrive at node n, should select the correct virtual
destination LIDn

x based on the message size and based on the num-
bers for x listed in Table 1. One can easily deduct from these two
Tables 1a and 1b, and Figure 3, that this routing approach achieves
criteria (1)–(3) for a 2D HyperX topology, such as ours5.

3.2.2 Optimization for Communication Demands of Applications.
Another advantage of AR over static routing is the ability to dynam-
ically balance traffic flows. For the latter, a mismatch between the
calculated paths and injected flows can cause congestion [30]. Tun-
ing the static routes towards the actual communication demands of
one or more applications may be beneficial — assuming a relatively
sparse and reoccurring communication pattern — for emulating AR.
A similar strategy, called scheduling-aware routing (SAR) [14], adds
application-to-node mappings into the routing engine. Hence, we
modify SAR [14] in Section 3.2.3 to ingest communication profiles.

Acquiring these communication profiles for point-to-point MPI
messages [51] is trivial with tools such as Vampir(Trace) [43] or
TAU [73], but for MPI’s collective operations these tools only pro-
vide high-level information. Actual point-to-point messages which
compose the collectives, and therefore the real node-to-node traf-
fic demand, remain unrecorded. Hence, we rely on a low-level IB
profiler [10], to record/store the profiles for each combination of
benchmark, input, and number of MPI ranks6. Our routing engine
can then perform fine-grain path balancing optimizations.

3.2.3 Pattern-Aware Routing for HyperX Topologies (a.k.a. PARX).
We combine the above outlined technical aspects into one novel

5We accomplish the identification of quadrants in our implementation by predefining
the LID-to-{port|switch} assignment through OpenSM’s guid2lid mapping file.
6This profile is immune to changed in MPI rank placement, topology, and IB routing.
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Algorithm 1: Pattern-Aware Routing for 2D HyperX (PARX)
Input: Network graph I = G(N ,C) with nodes N and linksC , Communication demand

file with one line per source node D := [(<destination>, <send demand>), . . .]
Result: Communication-aware, minimal & non-minimal, deadlock-free routing

with valid paths Pnx ,ny for all nx , ny ∈ N
/* Process of the communication demands */

foreach node n ∈ N do
n.demands← empty list []
foreach pair (nodeName, send demand) ∈ D[n] do

if nodeName ≡m ∈ N then n.demands.append[(m, send demand)]

/* Optimize routing for compute nodes listed in D, assuming 2LMC = 4 */

foreach node nd ∈ N with (nd , ·) ∈ D do
foreach i ∈ {0, . . . , 3} do

Create temporary graph I ∗ = G(N ,C∗) by remove links fromC according to
LIDi of nd and according to the rules (R1)–(R4) listed in Sec. 3.2.1

Calculate a path Pnx ,nd for every pair (nx , nd ), with nx ∈ N in I ∗ by using
the modified Dijkstra algorithm of DFSSSP routing (details in [17])

/* Update edge/link weights in graph I before the next round */

foreach node nx ∈ N do
if (nd ,w ) ∈ nx .demands then

Increase edge weight by +w for each link in path Pnx ,nd

/* Calculate routing for all other nodes which are not listed in D */

foreach node nd ∈ N ∧ nd not processed before do
Calculate paths P·,nd for all nx ∈ N and i = 0, . . . , 3 as shown above, however
Only update edge weights for all links used by P (·, nd ) with a +1 per path

/* Create deadlock-free routing configuration */

foreach path Pnx ,ny calculated above (incl. all virtual LIDs) do
Assign Pnx ,ny to one virtual layer without creating a cycle in the corresponding
channel dependency graph (see [17, 75] for details on VL-based deadlock-avoidance)

routing algorithmwhich is tailored for statically-routed, InfiniBand-
based 2D HyperX topologies. PARX increases path diversity by
simultaneously providing minimal and non-minimal paths and
allows for communication demand-based re-routing of the fabric,
all while being fault-tolerant7 and deadlock-free8.

We implement PARX in IB’s subnet manager (OpenSM) by taking
the deadlock-free SSSP routing (DFSSSP) [17, 63] as basis, and
modify it by adding an altered version of the SAR extensions [14] —
to ingest communication profiles instead of rank-to-node mappings.
Furthermore, we changed DFSSSP’s path calculation to temporarily
ignore/remove links from the network to abide by the rules (R1)–
(R4), and to consider the data from the communication profiles for
path balancing and tuning purposes. The pseudo-code of the PARX
routing engine for our HyperX is shown in Algorithm 1.

The communication profiles contain the absolute number of
bytes transferred between every pair of MPI ranks during the pro-
gram execution. We normalize these (potentially large) numbers
to the integer range of Dn := [0, . . . , 255], where 0 stands for ab-
solutely no bytes transferred between two ranks. A 1 indicates
a relatively low amount of bytes and 255 represents the highest
traffic demand between two MPI ranks. These normalized traffic
demands are used by PARX to balance the routes assigned to links
such that the number of overlapping paths, carrying high traffic
demands, are minimized. The base algorithm, DFSSSP, alternates
between calculating all paths towards one destination LIDx and
performing edge update of the weighted graph representing the
network topology. Per calculated path, DFSSSP adds +1 to each link
7Fault-tolerance is limited, because temporarily removing links, see Sec. 3.2.1, can
result in unreachable LIDs if the adjacent switch has no remaining links.
8For all of our evaluations, see Sec. 5, PARX requires between 5 and 8 virtual lanes (VLs),
depending on ingested communication profile, which is within limit of 8 available VLs
for our IB hardware. PARX may exceed a VL hardware limit for larger HPC systems.

along the path [17]. Hence, DFSSSP’s edge update results in global
path balancing, oblivious to the workload on the HPC system. In
contrast, our PARX algorithm updates the edges by addingw ∈ Dn ,
resulting in per-application(s) optimized paths, see the inner-most
loop of the triple nested loop in Algorithm 1. This approach reduces
the dark fiber [14], and high-traffic paths are separated as much as
possible to reduce congestion observed by the applications.

3.2.4 Modifications to the Message Passing Interface (MPI) Library.
The criteria (1) and (2) listed in Section 3.2, and routing approach
with PARX, require a categorisation of messages injected into the
network, as well as the assignment of appropriate (virtual) desti-
nation LIDs for these messages. None of the existing MPI libraries
is capable of performing this task. While, Open MPI [23] supports
IB’s multi-LID addressing, the default configuration — with the ob1
point-to-point messaging layer (PML) — uses multiple LIDs only
for fail-over in case of connection issues on the primary path.

The alternative PML, called bfo, offers concurrent multi-pathing
for IB by setting up as many connections between two HCAs as
these are (virtual) LIDs assigned to them, i.e., LID0 of port s can
communicate with LID0 of portd , LIDs

1 with LID
d
1 , etc. The bfo PML

iterates through the 2LMC LIDs in a round-robin fashion. After
transferring a message (or message segment for larger messages)
to LIDx the layer increments x or resets to 0. Hence, we can easily
modify this bfo point-to-point messaging layer to set x based on
the HyperX quadrants9 and rules provided in Table 1. Whenever
Table 1 lists two alternatives, we randomly select one.

In addition to the quadrant identification for a give injected mes-
sage (s → d), we need to distinguish message sizes for the selection
of x for the virtual LIDd

x . We performed an initial test with Intel’s
Multi-PingPong MPI benchmark [35] and mpiGraph, to evaluate at
which node-count per switch and which message size we observe
latency degradation due to congestion on the single link between
the two involved HyperX switches. Consequently, we define the
threshold to be 512 bytes for all PARX-based evaluations10.

4 METHODOLOGY
While we could deduce the suitability of the HyperX topology for
HPC applications from simple MPI benchmarks, actually testing a
broad spectrum of real scientific/HPC workloads, as listed below,
will refine our understanding of the novel topology. The following
inputs are tuned using a smaller node count such that each test
should theoretically take ≈1–5min, regardless of scale.

4.1 Pure MPI/Network Benchmarks
We evaluate raw latency/throughput performance for small mes-
sages, as found in HPC codes [42], and large communication loads,
as required for deep learning applications, with three benchmarks:
• Intel MPI Benchmarks (IMB) perform network latency/through-

put measurements of point-to-point and collective MPI operations
of varyingmessage sizes [35].We focus on IMB’s single-modeMPI-1
collectives (non-v version), meaning Barrier, Bcast, . . ., Alltoall.

9As done in PARX routing, we identify the quadrants by an appropriately predefined
LID-to-port assignment and determine quadrant q via equation q := ⌊ LID1000 ⌋.10This threshold depends on interconnect technology and #{nodes} attached to each
HyperX switch. Determining an optimal threshold is beyond the scope of this paper.
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• Netgauge’s eBB evaluates the effective bisection bandwidth [29]
for a given topology, as induced by the selected routing. We execute
1,000 random bisections with 1MiB message size per sample.
• Baidu’s DeepBench Allreduce (AllR) implements a ring-based

allreduce and evaluates the latency for a variety of messages sizes
(0–2GiB) [7]. We evaluate the CPU-only version of the code.

4.2 Scientific Application Benchmarks
Besides pure MPI benchmarks, we cover a broad set of scientific and
HPC domains by selecting Exascale Computing Project (ECP) [19]
procurement benchmarks, workloads from RIKEN R-CCS’ Fiber
Suits [68], and two codes — known to be highly communication-
intensive — from the Trinity [59] and CORAL [45] set:
• Algebraic multi-grid (AMG) solver of the hypre library is a par-

allel solver for unstructured grids [64] arising from fluid dynamics
problems. We choose problem 1 with a 2563 cube per process for
our tests, which applies a 27-point stencil on a 3-D linear system.
• Co-designed Molecular Dynamics (CoMD) serves as the ref-

erence implementation for ExMatEx [54] to facilitate co-design
for (and evaluation of) classical molecular dynamics algorithms.
We are using the included weak-scaling example to calculate the
inter-atomic potential for 643 atoms per process.
• MiniFE (MiFE) is a reference code of an implicit finite ele-

ments solver [27] for scientific methods resulting in unstructured
3-dimensional grids. For our study, we follow the recommended
nx = ny = nz = 3

√
nxb ∗ nyb ∗ nzb ∗ #processes weak-scaling for-

mula with n {x |y |z }b = 100 to define the grid’s input dimensions.
• SWFFT (FFT) represents the compute kernel of the HACC

cosmology application [26] for N-body simulations. The 3-D fast
Fourier transformation of SWFFT emulates one performance-critical
part of HACC’s Poisson solver. In our tests, we perform 16 repeti-
tions on a 3-D grid, which is weak-scaled similar to [78, Tab. 4.1].
• Frontflow/violet Cartesian (FFVC) uses the finite volumemethod

(FVM) [62] to solve the incompressible Navier-Stokes equation for
thermo-fluid analysis. Here, we calculate the 3-D cavity flow in a
1283 cuboid per process for weak-scaling.
• many-variable Variational Monte Carlo (mVMC) method imple-

mented by this mini-app is used to simulate quantum lattice models
for studying the physics of condensed matter [53]. We use mVMC’s
included weak-scaling test (job_middle) without modifications.
•NTChem (NTCh) implements a computational kernel of the soft-

ware framework (NTChem) for quantum chemistry calculations of
molecular electronic structures, i.e., the solver for the second-order
Møller-Plesset perturbation theory [58]. We select the provided
taxol test case for our study as strong-scaling input.
•MIMD Lattice Computation (MILC) is performing quantum chro-

modynamics (QCD) simulations using the lattice gauge theory on
the Lie group SU(3) [8]. We use NERSC’s Trinity MILC benchmark
code and weak-scale their single node benchmark_n8 input [60].
• LLNL’s qb@ll (Qbox) is an improved Qbox version [25, 44] for

first-principles molecular dynamics, which uses Density Functional
Theory (DFT) to, for example, calculate the electronic structure of
atoms. We weak-scale the computational load of qb@ll’s included
gold benchmark, assuming a single-node case of 32 gold atoms.

4.3 x500 Benchmarks
Lastly, we employ three HPC benchmarks11, which the community
uses to compare the supercomputers in a world-wide ranking:
• High Performance Linpack (HPL) is solving a dense system

of linear equations Ax = b to demonstrate the double-precision
compute capabilities of a (HPC) system [77]. Our problem size is
tuned such that matrix A occupies ≈1GiB per process.
• High Performance Conjugate Gradients (HPCG) is applying a

conjugate gradient solver to a system of linear equations (sparse
matrix A) [18], to demonstrate the system’s memory and network
limits. We choose 192×192×192 as process-local problem domain.
• Graph 500 Benchmark (GraD) measures the data analytics per-

formance of (super-)computers by evaluating the traversed-edges-
per-second metric (TEPS) for a breadth-first search (BFS) on a large
graph [57]. Our input graph occupies ≈1GiB per process and we
perform 16 BFSs with a highly optimized implementation [79].

4.4 Test Strategies, Environment, and Metrics
The benchmarks and applications, listed in Section 4.1–4.3, will be
evaluated in two different settings, i.e., in isolation to show system
capability, and in a more realistic multi-application environment.

4.4.1 Capability Evaluations. Our exclusive system access allows
us to execute capability runs sequentially and without overlap,
while keeping unoccupied nodes idle, which should give insight
into idealized achievable performance on the given topology. We
scale each benchmark starting from a single switch, i.e., seven nodes,
or four nodes if the benchmark requires #nodes in power-of-two.
From there we double the node count in each step, up to the max-
imum possible node count, i.e., 7, 14, . . . , 448, 672 or 4, 8, . . . , 512,
respectively. Each combination of: benchmark (and scale), topology,
routing, and placement (cf. Section 4.4.3), is executed ten times to
capture the best performance and occurring run-to-run variability.

4.4.2 Capacity Evaluations. Themulti-application executionmodel
is more common formany supercomputers [69]. These concurrently
running jobs may compete for bandwidth, or create inter-job in-
terference which can increase message latency [37]. We select the
following applications: AMG, CoMD, FFVC, Graph500, HPCG, HPL,
MILC, MiniFE, mVMC, NTChem, qb@ll, and SWFFT, plus one IMB
Multi-PingPong (MuPP) and one modified IMB Allreduce (EmDL)
benchmark12. Each application gets a dedicated set of nodes (32
or 56 nodes, respectively), and all are submitted simultaneously
and are configured to execute thousands of runs. We let the super-
computer perform this capacity evaluation for 3 h, using 664 of the
672 available compute nodes13. We evaluate the number of runs
per application and compare these numbers across the different
topologies, routings, and allocations.

4.4.3 Routing and Placement. Both the routing algorithm and the
MPI rank placement can positively (or negatively) influence the

11For both HPL and HPCG, we employ the highly tuned versions shipped with Intel’s
Parallel Studio XE (v2018; update 3) with appropriate PNB parameter for our system.
12 EmDL is a modified IMB Allreduce to mimic deep learning workloads by alternating
between communication and an 0.1 s compute phase simulated via usleep.
13Designed as qualitative comparison between the two topologies (due to complexity
of such evaluations) to look for potential weaknesses in our HyperX to aid future R&D.
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communication performance for parallel applications. Hence, we
evaluate five different routing and placement combinations.

We choose the commonly used ftree routing [85], as well as SSSP
routing [31] (both part of IB’s OpenSM [34]), for the Fat-Tree. The
latter theoretically yields increased throughput for faulty Fat-Tree
deployments [15] such as ours (cf. Section 2.3). Furthermore, we
test two MPI rank placements for the Fat-Tree. The first placement
is a linear assignment of MPI ranks, meaning rank 1 is placed
on compute node n1, . . ., rank i on node ni , and so on, which is
a common resource allocation practise [71, 84]. It reduces small
message latency while isolating small-scale runs into subpartitions
of the network to reduce interference [52]. The clustered placement
is more realistic and yields from the system’s fragmentation over
its operational period [67]. We simulate it by drawing the stride ∆
from node ni to the next node nj from a geometric distribution
with an (arbitrarily chosen) 80% probability, and hence j := i + ∆.

We rely on OpenSM’s DFSSSP [17] for our HyperX network
due to aforementioned deadlock-issues, see Section 3.2. DFSSSP
requires only 3 virtual lanes (VL) to achieve the deadlock-freedom
for our HyperX, which is well within the hardware limit of 8 VLs.
Additionally, we test our novel PARX routing for bottleneck mit-
igation, see Section 3.2.3, as well as the random rank placement
introduced in Section 3.1. Furthermore, we test linear and clustered
placements. Our stored communication profiles are MPI rank-based
and placement oblivious, therefore we require an interface — simi-
lar to SAR’s [14] — between the job-submission and OpenSM. This
interface combines the profile(s) and selected node allocation for
one (or more) application into a node/LID-based demand data file,
which PARX uses to re-route the fabric prior to the job start.

In summary, in Section 5 we are evaluating the following five
combinations of topology, routing, and resource allocation scheme:

(1) Fat-Tree with ftree routing and linear placement;
(2) Fat-Tree with SSSP routing and clustered placement;
(3) HyperX with DFSSSP routing and linear placement;
(4) HyperX with DFSSSP routing and random placement; and
(5) HyperX with PARX routing and clustered placement,

and collect performance data from all runs, as indicated below.

4.4.4 Evaluated Performance Metrics. We extract the performance
data directly from the output of the pure network benchmarks
(cf. Section 4.1), i.e., observable communication latency and mes-
sage throughput for different MPI operations and messages sizes.
Details about the collected metrics is provided in Table 2, which
also summarizes how we scale up each (application-)benchmark.
For reference purposes, we include the executed MPI communica-
tion functions used by each benchmark. The same methodology
is used for the x500 benchmarks (cf. Section 4.3), which directly
report either floating-point operations per seconds or median tra-
versed graph edges per second. In contrast, for the nine HPC work-
loads listed in Section 4.2, we uniformly report the runtime of the
main computational solver/kernel14. Focusing on only the solver
phase is required, because (for most proxy-apps) the pre- and/or
post-processing phase is disproportionally long which skews the
performance expectations for the real applications.

14We injected timing instructions into the original code, whenever the proxy-app did
not provide accurate timings of the solver phase or reported alternative metrics.

Table 2: List of applications/benchmarks; Overview of used
MPI functions; Collected metrics from each BM; Deployed
scalingmethod (*: instanceswherewe scaled down the input
for larger #nodes to reduce runtime; further details in Sec. 5)

MPI Used MPI point-to-point & collective functions Scaling Metric
IMB (All)Reduce Alltoall Barrier Bcast Gather Scatter weak Latency tmin [µs]
eBB Isend Irecv Barrier Gather Scatter strong Throughput [MiB/s]
AllR Send Irecv Sendrecv Allgather weak Latency tavд [s]

Apps Used MPI point-to-point & collective functions Scaling Metric
AMG (I)Send (I)Recv Allgather(v) Allreduce Bcast etc. weak Kernel runtime [s]
CoMD Sendrecv Allreduce Barrier Bcast weak Kernel runtime [s]
MiFE Send Irecv Allgather Allreduce Bcast weak Kernel runtime [s]
FFT (I)Send (I)Recv Allreduce Barrier weak Kernel runtime [s]
FFVC Isend Irecv (All)Reduce Gather weak* Kernel runtime [s]
mVMC (I)Send Sendrecv Recv (All)Reduce Bcast Scatter weak Kernel runtime [s]
NTCh Isend Irecv Allreduce Barrier Bcast strong Kernel runtime [s]
MILC Isend Irecv Allreduce Barrier Bcast weak Kernel runtime [s]
Qbox (I|R)Send (I)Recv (All)Reduce Alltoallv Bcast etc. weak* Kernel runtime [s]
x500 Used MPI point-to-point & collective functions Scaling Metric
HPL Send (I)Recv weak* Floating-point Op/s
HPCG Send Irecv Allreduce Alltoall(v) Barrier Bcast weak Floating-point Op/s
GraD Isend Irecv Allgather (All)Reduce(_scatter) etc. weak Traversed edges/s

4.4.5 Execution Environment. Our HPC system uses the CentOS 7.4
operating system for the compute nodes, configured for diskless op-
eration, and the OpenFabrics Enterprise Distribution (OFED) stack
(version 4.8) for the IB networks, with one exception: a renewed
OpenSM (v3.3.21). OpenMPI 1.10.7 serves as communication library.
We refrain from adding other (usually needed) HPC software com-
ponents, such as batch scheduler or parallel file system15.

All applications and micro-benchmarks are compiled with the
OS-provided Gnu compilers16. We refrain from modifying the de-
fault, application-provided compiler options, and only additionally
optimize for our CPUs by specifying the -march=native flag.

The general executionmodel for our benchmarks isMPI+OpenMP
with one MPI rank per compute node and one OpenMP thread
per physical CPU core. The OpenMP threads are pinned and MPI
ranks are mapped sequentially onto the nodes provided by a sorted
hostfile. While there are certainly more optimal (in terms of
computational performance) configurations for some of the appli-
cations — with more ranks per node or thread-to-core under- or
oversubscription — we focus in our study on the 1-to-1 network
comparison for which our rank/thread model should be sufficient.
Each benchmark invocation is allowed a 15min walltime before
being forcefully terminated, to prevent excessive overruns.

5 EVALUATION
The following measurements are performed according to the stipu-
lated terms of Section 4.4. Therefore, the only difference between
benchmarks — besides replaced nodes — is the fabric and placement.

5.1 Network Benchmarks
For IMB’s MPI collective benchmarks, shown in Figure 5, we extract
the absolute best observed communication latency (i.e„ tmin [in µs])
for eachmessage size from our 10 runs for the five topology, routing,
15The network filesystem (NFS) is able to handle the miniscule I/O of the proxy-apps,
and for simplicity/repeatability, we rely on hostfiles and manual execution of jobs.
While our software stack may appear dated, it roughly matches the environment when
the system was in production. Please, refer to the AD/AE appendix for further details.
16See footnote 11 in Secion 4.3 for the two exceptions in the compiler selection.
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-0.10
+0.02
-0.02
+0.03
-0.35
-0.11
+0.01
-0.15
-0.03
-0.27
-0.02
+0.02

-0.24
-0.21
-0.24
-0.20
-0.18
-0.19
-0.21
-0.15
-0.15
-0.10
-0.10
-0.11
-0.14
-0.10
-0.12
-0.43
-0.18
+0.09
-0.08
-0.08
-0.10
-0.00
+0.02
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(a) Bcast
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Node count

Fat-Tree / SSSP / clustered

+0.00
+0.16
+0.08
+0.04
+0.04
+0.04
+0.08
+0.03
+0.07
+0.08
+0.05
+0.06
+0.05
+0.03
-0.01
-0.02
+0.03
+0.01
+0.03
-0.00
-0.01
-0.00
-0.00

+0.04
+0.00
+0.00
+0.04
+0.04
+0.00
+0.04
+0.00
-0.02
+0.06
+0.19
+0.05
+0.04
+0.02
+0.04
+0.13
+0.01
-0.01
-0.02
+0.02
+0.04
+0.13
+0.17

+0.00
+0.08
+0.04
-0.04
+0.04
+0.04
+0.00
+0.00
+0.00
+0.00
+0.03
-0.02
-0.02
-0.07
-0.05
+0.12
+0.01
+0.00
+0.00
+0.02
+0.05
+0.20
+0.23

+0.04
+0.00
+0.04
+0.00
-0.04
+0.00
+0.00
+0.00
+0.00
+0.00
+0.00
+0.01
+0.01
+0.54
-0.01
-0.02
+0.28
-0.01
+0.04
+0.01
+0.03
+0.20
+0.23

+0.00
-0.03
+0.00
+0.00
+0.00
-0.03
+0.00
+0.00
+0.00
+0.00
+0.02
-0.02
-0.03
-0.06
+0.11
-0.03
-0.19
+0.00
+0.04
-0.03
+0.04
+0.20
+0.22

+0.03
+0.04
+0.00
-0.22
-0.12
-0.15
+0.11
+0.07
+0.07
+0.06
+0.07
+0.05
+0.05
+0.01
+0.01
+0.10
-0.01
-0.05
-0.04
+0.00
+0.02
+0.17
+0.25

+0.00
+0.00
+0.00
+0.00
+0.00
+0.00
-0.03
+0.00
+0.00
+0.03
-0.01
-0.08
-0.06
-0.10
-0.05
-0.02
-0.01
-0.02
+0.02
-0.01
+0.01
+0.18
+0.22

+0.06
+0.16
+0.03
+0.03
+0.03
+0.03
+0.03
+0.02
+0.00
+0.00
+0.00
-0.01
+0.05
+0.53
+0.09
-0.06
-0.05
-0.31
-0.03
+0.01
+0.03
-0.01
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Node count

HyperX / DFSSSP / linear

+0.00
-0.03
+0.04
+0.00
+0.00
+0.04
+0.08
+0.03
+0.02
+0.02
+0.05
-0.10
-0.09
+0.02
+0.02
-0.01
+0.03
+0.01
+0.00
+0.21
+0.58
+0.79
+0.88

+0.04
-0.04
-0.04
-0.04
-0.04
-0.04
-0.04
+0.00
-0.02
-0.03
-0.03
+0.02
+0.01
-0.35
+0.06
+0.17
-0.06
-0.01
-0.07
-0.20
+0.16
+0.57
+0.92

-0.04
+0.00
+0.00
-0.07
+0.00
+0.00
+0.04
-0.02
+0.00
+0.02
+0.03
+0.00
+0.03
+0.01
-0.10
+0.14
-0.07
+0.03
+0.01
+0.15
+0.63
+1.90
+2.69

+0.00
+0.00
+0.04
+0.00
-0.04
-0.03
+0.00
+0.00
+0.00
-0.02
+0.00
+0.01
-0.01
+0.57
+0.05
-0.01
+0.21
+0.01
+0.06
-0.01
+0.67
+1.31
+1.55

+0.00
-0.03
+0.00
-0.03
-0.03
-0.07
-0.03
+0.00
+0.00
+0.02
+0.00
-0.01
-0.03
+0.21
+0.19
+0.08
-0.02
+0.04
-0.07
-0.07
+0.27
+0.92
+1.57

+0.00
-0.03
+0.00
+0.00
+0.00
+0.00
-0.03
+0.00
-0.02
+0.00
+0.03
-0.01
-0.02
+0.40
+0.04
+0.14
-0.01
-0.01
+0.03
+0.09
+0.28
+0.70
+0.85

-0.06
-0.06
-0.03
-0.03
+0.00
+0.00
-0.03
+0.02
+0.00
+0.05
-0.01
-0.04
-0.04
+0.24
-0.23
+0.01
-0.05
-0.01
-0.11
-0.07
+0.21
+0.86
+1.49

+0.03
+0.12
+0.03
+0.00
+0.00
+0.03
+0.00
+0.02
-0.02
-0.03
+0.00
+0.02
-0.02
+0.23
-0.01
+0.07
+0.00
-0.31
-0.10
-0.04
+0.29
+0.87
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Node count

HyperX / DFSSSP / random

-0.07
+0.00
+0.00
-0.04
+0.00
-0.04
-0.04
-0.03
+0.02
+0.06
+0.08
-0.20
-0.15
-0.15
-0.09
+0.01
+0.02
-0.01
-0.04
-0.10
+0.37
+0.66
+0.81

-0.07
-0.04
-0.07
+0.00
+0.00
+0.00
-0.04
-0.02
-0.02
+0.04
+0.11
-0.23
-0.28
-0.12
-0.02
+0.22
+0.07
-0.04
-0.02
-0.32
+0.73
+1.85
+2.55

+0.04
+0.04
+0.00
-0.04
+0.00
+0.00
+0.00
-0.02
-0.02
+0.00
-0.02
-0.03
-0.01
-0.09
-0.14
+0.10
-0.19
-0.03
-0.02
-0.02
+0.69
+1.14
+1.11

+0.04
+0.04
+0.00
+0.00
-0.04
+0.00
+0.00
-0.02
+0.00
-0.07
-0.03
-0.01
+0.01
+0.51
-0.01
-0.07
+0.30
-0.01
+0.04
+0.39
+0.80
+1.11
+1.23

-0.03
-0.03
+0.00
+0.00
+0.00
-0.03
+0.00
+0.02
+0.02
+0.02
+0.00
-0.09
-0.05
-0.04
+0.15
+0.07
-0.05
+0.01
-0.06
-0.41
-0.01
+0.11
+0.03

+0.00
+0.00
+0.00
+0.00
+0.04
+0.00
+0.03
+0.00
-0.02
+0.00
+0.01
-0.23
-0.05
+0.21
-0.03
+0.12
-0.02
+0.10
+0.00
+0.49
+1.39
-0.15
-0.03

+0.03
+0.03
+0.04
+0.00
+0.00
+0.00
-0.14
+0.02
+0.00
+0.03
+0.00
-0.06
-0.03
-0.06
+0.02
-0.13
-0.01
-0.02
+0.00
+0.44
+1.36
+1.63
+1.24

+0.03
+0.16
+0.00
+0.03
+0.03
+0.03
+0.00
+0.00
+0.00
-0.04
-0.01
+0.06
-0.01
+0.98
+0.04
-0.02
-0.04
+0.00
-0.12
+0.09
+1.00
+1.20

7 14 28 56 112 224 448 672 -1.0

+1.0

Node count

HyperX / PARX / clustered

-0.39
-0.33
-0.38
-0.40
-0.41
-0.41
-0.39
-0.29
-0.29
-0.22
-0.21
-0.24
-0.20
-0.13
-0.25
+1.01
+0.06
-0.13
-0.13
+0.23
-0.01
+0.09
+0.28

-0.49
-0.43
-0.44
-0.45
-0.44
-0.43
-0.43
-0.31
-0.28
-0.23
-0.07
-0.22
-0.25
-0.62
-0.13
+1.57
-0.13
-0.15
-0.15
+0.07
+0.05
+0.14
+0.32

-0.47
-0.40
-0.43
-0.47
-0.45
-0.42
-0.42
-0.30
-0.27
-0.24
-0.18
-0.17
-0.14
-0.45
-0.28
+0.40
-0.18
-0.11
-0.12
+0.18
+0.35
+0.38
+0.24

-0.43
-0.40
-0.40
-0.43
-0.45
-0.42
-0.38
-0.29
-0.26
-0.36
-0.21
-0.16
-0.14
-0.06
-0.22
-0.29
-0.06
-0.13
-0.11
+0.28
+0.63
+0.76
+0.38

-0.46
-0.40
-0.43
-0.43
-0.43
-0.43
-0.40
-0.36
-0.28
-0.24
-0.18
-0.17
-0.12
-0.27
-0.11
-0.27
-0.21
-0.19
-0.52
+0.32
+0.67
+0.72
+0.33

-0.55
-0.51
-0.46
-0.41
-0.40
-0.41
-0.40
-0.30
-0.27
-0.22
-0.16
-0.12
-0.13
-0.41
-0.18
-0.20
-0.16
-0.03
-0.17
+0.01
+0.13
+0.51
+0.52

-0.47
-0.42
-0.41
-0.38
-0.38
-0.37
-0.38
-0.26
-0.28
-0.15
-0.17
-0.19
-0.14
-0.35
-0.52
-0.29
-0.21
-0.23
-0.01
+0.31
-0.02
+0.63
+0.93

-0.44
-0.32
-0.42
-0.43
-0.43
-0.38
-0.37
-0.27
-0.27
-0.18
-0.33
-0.07
-0.04
+0.28
-0.30
-0.28
-0.27
-0.58
+0.06
+0.38
+0.47
+0.54
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(b) Gather
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Node count

Fat-Tree / SSSP / clustered

-0.08
-0.02
-0.07
+0.03
-0.04
-0.03
+0.04
+0.02
+0.01
+0.02
+0.01
+0.04
+0.02
+0.02
+0.13
+0.01
+0.02
+0.01
+0.01
-0.00
-0.00
-0.01
-0.01

-0.03
+0.02
+0.02
+0.01
+0.01
-0.05
+0.01
+0.00
-0.02
-0.04
-0.01
+0.01
-0.14
+0.00
+0.02
-0.03
-0.00
+0.01
+0.02
+0.01
+0.00
-0.01
-0.00

-0.42
-0.36
-0.41
-0.33
-0.38
-0.36
-0.03
-0.29
-0.20
-0.31
-0.23
-0.18
-0.15
-0.11
+0.00
+0.08
+0.07
-0.04
+0.01
+0.03
-0.02
+0.01
-0.04

-0.39
-0.18
-0.05
+0.11
+0.01
-0.11
+0.06
+0.01
-0.03
-0.04
-0.03
-0.08
-0.03
-0.03
-0.01
-0.00
-0.01
+0.03
+0.00
-0.02
-0.01
-0.01
-0.00

+0.02
+0.02
+0.08
+1.03
-0.05
-0.05
+0.03
+0.01
+0.09
+0.04
-0.10
+0.07
-0.06
-0.02
+0.00
+0.02
+0.18
-0.14
-0.00
-0.03
+0.00
+0.09
-0.01

+0.07
-0.09
-0.07
+0.13
+0.51
+0.68
+0.03
+0.06
+0.18
-0.14
+0.06
+0.08
+0.07
+0.10
-0.75
-0.02
-0.03
-0.22
-0.59
+0.02
-0.02
+0.18
-0.27

+0.32
-0.09
+0.10
+0.01
-0.44
-0.79
-0.25
+0.17
-0.26
+0.14
-0.30
+0.09
-0.09
-0.06
+0.11
+0.01
-0.60
+0.02
-0.05
+1.20
-0.19
+0.35
+0.41

-0.20
+0.03
+0.47
+0.08
-0.03
+0.14
-0.29
-0.31
-0.10
-0.29
+0.09
-0.05
-0.03
+0.18
-0.32
+0.49
+0.40
+0.13
+0.52
+0.49
+0.01
+0.03
+0.00
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Node count

HyperX / DFSSSP / linear

+0.15
+0.14
+0.22
+0.17
+0.15
+0.14
+0.17
+0.04
+0.05
+0.03
+0.09
+0.01
+0.01
+0.10
+0.13
+0.00
+0.01
-0.01
-0.01
-0.01
-0.02
-0.02
-0.01

+0.04
+0.05
+0.04
+0.05
+0.04
-0.02
-0.02
+0.01
+0.04
-0.02
-0.06
-0.02
-0.04
+0.00
-0.06
-0.00
-0.01
+0.02
-0.00
-0.02
-0.02
-0.01
-0.02

-0.34
-0.29
-0.18
-0.25
-0.24
-0.56
+0.06
-0.31
-0.19
-0.15
-0.16
+0.02
-0.04
-0.17
+0.00
-0.04
-0.00
+0.01
-0.01
-0.01
-0.02
-0.00
-0.01

+0.03
+0.08
-0.06
+0.29
+0.11
+0.03
-0.01
+0.06
-0.03
-0.06
+0.00
-0.05
-0.01
-0.05
-0.00
-0.02
-0.03
-0.01
-0.00
-0.02
-0.02
-0.02
-0.01

+0.15
+0.17
+0.17
+0.96
+0.07
+0.01
+0.04
+0.02
+0.12
-0.28
+0.03
+0.15
+0.10
+0.23
+0.07
+0.03
-0.02
+0.11
+0.05
-0.00
-0.01
-0.09
-0.01

+0.18
-0.01
+0.06
+0.28
+0.25
+0.46
+0.14
+0.07
+0.27
+0.11
+0.41
+0.26
+0.19
+0.23
+0.16
+0.13
-0.02
+0.24
+0.07
+0.01
-0.17
+0.11
-0.10

-0.04
-0.04
+0.24
+0.17
-0.05
-0.69
-0.61
+0.27
-0.02
-0.16
+0.28
+0.68
+0.12
+0.20
-0.06
+0.46
-0.03
+0.28
-0.05
+1.15
+0.12
+0.72
+0.48

+0.96
-0.06
+0.99
-0.24
+0.06
-0.44
-0.44
-0.01
-0.29
+0.06
+0.39
+0.45
+0.22
+0.02
-0.04
+0.56
+0.51
-0.03
+0.56
+0.41
+0.08
+0.02
+0.00
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Node count

HyperX / DFSSSP / random

-0.23
-0.04
-0.04
+0.02
-0.11
-0.06
-0.04
-0.01
-0.01
-0.06
-0.03
-0.05
-0.02
-0.00
+0.01
-0.02
-0.02
-0.02
-0.00
-0.02
-0.01
-0.01
-0.01

-0.03
+0.01
-0.03
-0.03
-0.03
-0.08
-0.02
-0.04
-0.02
-0.13
-0.13
-0.05
-0.07
+0.11
-0.02
-0.00
-0.01
-0.02
-0.00
-0.01
-0.02
-0.01
-0.02

-0.47
-0.41
-0.38
-0.35
-0.35
-0.38
-0.23
-0.38
-0.29
-0.28
-0.20
-0.10
-0.04
+0.03
-0.13
-0.02
-0.01
-0.01
-0.01
-0.02
-0.05
-0.00
-0.01

-0.10
-0.04
-0.21
+0.23
-0.02
-0.11
-0.20
-0.01
-0.09
-0.05
-0.03
-0.11
-0.10
-0.07
+0.06
-0.04
-0.02
+0.01
-0.01
-0.04
-0.01
-0.02
-0.01

+0.13
+0.03
+0.27
+1.19
-0.35
-0.04
-0.03
+0.02
+0.16
-0.22
+0.06
+0.13
+0.03
+0.08
+0.02
+0.04
+0.20
+0.18
+0.17
+0.04
-0.00
-0.07
+0.00

+0.15
-0.02
-0.04
+0.17
+0.53
+0.81
-0.35
-0.33
-0.12
+0.17
+0.17
+0.10
+0.16
+0.29
+0.13
+0.14
-0.04
+0.23
+0.05
+0.02
-0.11
+0.11
-0.08

-0.40
+0.06
-0.39
-0.05
-0.03
-0.70
+0.84
+0.04
-0.04
+0.85
+0.14
+0.43
+0.20
+0.05
-0.04
+0.31
-0.05
-0.24
-0.05
+1.17
-0.01
+0.69
+0.49

-0.33
-0.19
+0.11
-0.45
-0.10
+0.33
-0.37
-0.21
+0.16
-0.44
-0.12
+0.82
+1.24
+0.43
-0.09
+0.05
-0.58
-0.02
+0.57
-0.27
+0.10
+0.01
+0.00
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Node count

HyperX / PARX / clustered

-0.37
-0.09
-0.16
-0.02
-0.12
-0.08
-0.08
-0.08
-0.05
-0.13
-0.09
-0.06
-0.01
+0.08
-0.25
-0.15
-0.15
-0.23
-0.34
-0.01
-0.01
-0.00
+0.00

-0.24
-0.28
-0.22
-0.20
-0.22
-0.19
-0.13
-0.15
-0.05
-0.21
-0.14
-0.06
-0.05
+0.03
-0.87
-0.23
-0.23
-0.21
-0.21
-0.11
-0.10
-0.09
-0.09

-0.67
-0.45
-0.53
-0.37
-0.40
-0.41
-0.18
-0.37
-0.36
-0.98
-0.27
-0.15
-0.17
-0.10
-0.86
-0.18
-0.19
-0.26
-0.24
-0.01
-0.03
+0.01
+0.00

-0.46
-0.24
-0.17
+0.11
-0.11
-0.20
-0.22
-0.14
-0.59
-1.00
-0.37
-0.20
-0.18
-0.04
-0.85
+0.44
+0.18
-0.07
-0.07
-0.03
-0.04
-0.02
-0.02

-0.53
-0.20
-0.05
+0.77
-0.20
-0.30
-0.50
-0.21
-0.37
-1.00
-0.23
-0.11
-0.07
-0.11
-0.85
+0.37
+0.07
-0.34
-0.23
-0.16
-0.07
-0.01
-0.05

-0.64
-0.35
-0.11
+0.14
+0.59
+0.64
-0.39
-0.23
-0.30
-0.43
-0.16
-0.05
-0.16
-0.07
-0.88
+0.40
-0.48
-0.31
-0.30
-0.16
-0.10
+0.11
-0.03

-0.56
-0.27
-0.04
-0.30
-0.14
-0.11
-0.31
-0.21
-0.48
-0.45
-0.13
+0.07
-0.28
-0.21
-0.85
-0.74
-0.49
-0.30
-0.43
+0.70
-0.20
+0.50
+0.40

-0.35
-0.64
-0.25
+0.07
-0.44
-0.24
-0.24
-0.28
-0.18
-0.67
-0.57
+0.18
-0.06
-0.11
-0.69
-0.57
-0.75
-0.46
-0.03
-0.03
-0.26
-0.28
+0.00

R
el

at
iv

e 
P

er
fo

ra
m

nc
e 

G
ai

n

(c) Scatter

4
8

16
32
64

128
256
512

1024
2048
4096
8192

16384
32768
65536

131072
262144
524288

1048576
2097152
4194304

7 14 28 56 112 224 448 672

M
es

sa
ge

 s
iz

e

Node count

Fat-Tree / SSSP / clustered

+0.00
+0.04
+0.04
+0.08
+0.00
-0.03
+0.00
-0.03
-0.05
-0.10
-0.03
-0.02
+0.00
+0.00
+0.07
+1.11
-0.00
-0.01
-0.01
-0.01
-0.00

+0.00
+0.03
+0.00
+0.07
+0.07
+0.02
+0.04
+0.02
+0.02
-0.02
+0.02
+0.03
+0.00
+0.02
+0.04
-0.60
-0.01
-0.02
-0.01
-0.01
-0.01

+0.00
-0.03
+0.00
+0.00
+0.00
+0.00
+0.00
+0.00
+0.10
+0.04
+0.02
+0.03
+0.03
+0.01
+0.03
+0.02
+0.02
-0.00
+0.00
-0.01
-0.01

+0.00
+0.03
+0.00
+0.00
+0.00
+0.00
+0.00
+0.02
+0.05
+0.05
+0.00
-0.01
+0.01
+0.01
-0.00
+0.02
+0.02
+0.00
+0.04
+0.00
+0.00

+0.00
+0.00
+0.00
+0.03
+0.00
+0.00
+0.00
+0.00
+0.00
-0.03
-0.01
+0.02
+0.01
+0.00
-0.00
+0.01
-0.00
-0.03
-0.01
+0.00
-0.00

+0.00
-0.03
-0.03
-0.03
+0.00
+0.00
+0.00
+0.00
-0.02
-0.02
+0.00
+0.00
-0.00
+0.01
-0.01
-0.01
-0.03
+0.01
+0.01
-0.46
+0.02

+0.00
+0.00
+0.37
+0.06
+0.12
-0.09
-0.06
-0.03
-0.07
-0.06
-0.10
-0.05
-0.05
-0.05
-0.04
-0.04
-0.02
+0.01

+61.29
+0.02
-0.33

-0.06
-0.03
+0.00
+0.00
+0.00
+0.00
+0.00
+0.00
+0.01
-0.01
-0.01
+0.01
+0.01
-0.01
+0.00
+0.02
+0.02
+0.02
-0.00
+1.84
+0.17

7 14 28 56 112 224 448 672

Node count

HyperX / DFSSSP / linear

-0.04
-0.04
+0.00
+0.04
+0.00
-0.05
+0.02
+0.09
+0.13
-0.14
-0.16
-0.13
-0.04
-0.05
+0.12
+1.10
+0.03
+0.02
+0.02
+0.01
+0.01

-0.03
+0.00
+0.00
+0.03
+0.03
-0.02
+0.00
-0.03
-0.09
-0.10
-0.02
-0.01
-0.03
+0.02
+0.03
-0.04
-0.00
-0.00
+0.01
+0.01
+0.00

+0.04
+0.00
+0.03
+0.00
+0.03
+0.00
+0.00
+0.02
+0.05
+0.02
+0.01
+0.01
+0.02
-0.01
+0.03
+0.01
+0.01
-0.01
+0.03
+0.02
+0.03

+0.00
+0.00
-0.03
-0.03
-0.03
+0.00
+0.00
+0.02
+0.02
+0.03
+0.01
-0.01
-0.01
+0.00
-0.02
-0.01
-0.01
-0.02
-0.00
+0.03
+0.03

+0.00
+0.00
+0.00
-0.03
+0.00
+0.00
+0.02
+0.00
-0.02
-0.04
-0.01
-0.01
-0.02
-0.00
-0.01
-0.01
-0.01
-0.06
-0.01
-0.01
+0.02

+0.03
-0.03
+0.00
-0.03
+0.00
+0.02
-0.02
+0.00
-0.02
-0.03
-0.00
-0.02
-0.00
-0.02
-0.02
-0.02
-0.04
-0.00
-0.01
+0.00
+0.01

+0.00
+0.03
+0.50
+0.15
+0.15
-0.07
-0.06
-0.16
-0.09
-0.06
-0.11
-0.07
-0.07
-0.06
-0.06
-0.06
-0.00
-0.03

+59.94
+0.00
-0.23

-0.03
-0.03
-0.03
-0.03
-0.03
+0.00
+0.00
-0.02
-0.01
+0.00
-0.02
-0.00
+0.01
-0.02
-0.02
-0.02
-0.02
-0.02
-0.01
+1.77
+0.46

7 14 28 56 112 224 448 672

Node count

HyperX / DFSSSP / random

-0.04
+0.00
+0.00
+0.04
+0.00
-0.03
+0.05
+0.09
+0.05
-0.24
-0.21
-0.16
-0.13
-0.05
+0.06
+1.05
+0.01
+0.02
+0.01
+0.01
+0.00

+0.00
+0.07
+0.04
+0.07
+0.07
+0.00
+0.00
+0.02
-0.06
-0.03
-0.02
+0.01
-0.01
+0.00
+0.04
-0.42
-0.00
+0.00
+0.00
+0.01
+0.00

+0.00
-0.03
+0.00
+0.00
+0.00
+0.00
-0.02
+0.00
+0.06
+0.01
+0.03
+0.00
+0.01
-0.02
-0.00
+0.00
+0.01
-0.00
+0.04
+0.03
+0.03

+0.03
+0.00
-0.03
-0.03
+0.00
-0.02
-0.02
-0.02
-0.06
-0.02
-0.02
-0.02
-0.03
-0.01
-0.03
+0.01
+0.01
+0.00
-0.61
+0.03
+0.03

+0.00
+0.00
+0.03
+0.00
+0.00
+0.00
+0.00
+0.02
+0.00
+0.02
-0.01
-0.01
+0.00
-0.02
-0.02
+0.01
-0.04
-0.08
-0.02
-0.03
+0.02

+0.00
+0.00
-0.03
-0.31
-0.14
+0.07
+0.04
+0.05
+0.07
+0.06
+0.03
+0.03
+0.03
+0.05
+0.02
+0.03
+0.00
-0.04
-0.02
+0.01
-0.24

+0.00
+0.03
+0.50
+0.15
+0.19
-0.09
-0.11
-0.07
-0.07
-0.07
-0.11
-0.07
-0.08
-0.07
-0.06
-0.06
-0.05
-0.03

+59.03
-0.42
-0.07

+0.00
-0.03
+0.03
+0.00
+0.00
+0.00
+0.00
-0.02
-0.01
-0.01
-0.02
-0.02
-0.01
-0.01
-0.02
-0.01
-0.02
+0.01
-0.03
+1.80
+0.48

7 14 28 56 112 224 448 672 -1.0

+1.0

Node count

HyperX / PARX / clustered

-0.42
-0.42
-0.42
-0.40
-0.43
-0.31
-0.30
-0.25
-0.25
-0.34
-0.29
-0.23
-0.26
-0.57
-0.10
+0.24
-0.04
-0.01
-0.03
-0.02
-0.04

-0.40
-0.40
-0.42
-0.37
-0.37
-0.30
-0.27
-0.23
-0.21
-0.17
-0.12
-0.11
-0.08
-0.04
-0.02
-0.72
-0.08
-0.03
-0.01
-0.01
-0.02

-0.40
-0.43
-0.41
-0.40
-0.41
-0.27
-0.28
-0.26
-0.13
-0.07
-0.01
-0.01
-0.03
-0.06
-0.17
-0.09
-0.07
-0.05
+0.02
+0.01
+0.01

-0.39
-0.40
-0.42
-0.40
-0.38
-0.28
-0.26
-0.24
-0.14
-0.10
-0.05
-0.07
-0.07
-0.06
-0.08
-0.11
-0.07
-0.06
-0.04
+0.02
+0.02

-0.40
-0.39
-0.42
-0.39
-0.39
-0.27
-0.26
-0.38
-0.19
-0.11
-0.07
-0.05
-0.04
-0.02
-0.05
-0.02
-0.11
-0.08
-0.03
-0.04
+0.02

-0.44
-0.40
-0.40
-0.40
-0.38
-0.27
-0.27
-0.19
-0.17
-0.09
-0.04
-0.06
-0.02
-0.03
-0.07
-0.01
-0.05
-0.06
-0.01
-0.03
-0.01

-0.44
-0.39
-0.09
-0.27
-0.27
-0.33
-0.30
-0.21
-0.22
-0.15
-0.13
-0.10
-0.09
-0.08
-0.06
-0.10
-0.07
-0.06

+54.23
+0.02
-0.04

-0.42
-0.41
-0.40
-0.33
-0.35
-0.27
-0.24
-0.17
-0.15
-0.09
-0.05
-0.06
-0.06
-0.08
-0.05
-0.07
-0.04
-0.03
-0.05
+1.67
+0.40

R
el

at
iv

e 
P

er
fo

ra
m

nc
e 

G
ai

n
(d) Reduce

4
8

16
32
64

128
256
512

1024
2048
4096
8192

16384
32768
65536

131072
262144
524288

1048576
2097152
4194304

7 14 28 56 112 224 448 672

M
es

sa
ge

 s
iz

e

Node count

Fat-Tree / SSSP / clustered

-0.23
-0.02
-0.01
-0.01
+0.01
-0.01
+0.00
-0.00
-0.01
+0.01
-0.01
+0.00
-0.04
+0.03
+0.01
+0.01
+0.00
+0.19
+0.04
+0.03
+0.02

-0.01
+0.05
+0.01
+0.01
+0.02
-0.01
+0.03
+0.14
-0.12
-0.02
+0.00
+0.01
-0.03
+0.03
-0.01
+0.02
-0.06
-0.02
-0.02
+0.02
+0.01

-0.06
-0.12
-0.06
-0.08
-0.04
+0.13
+0.14
-0.16
-0.10
-0.10
+0.00
+0.03
+0.02
-0.03
-0.01
+0.04
-0.01
-0.00
+0.01
-0.03
-0.10

-0.09
-0.23
-0.18
-0.04
-0.05
-0.09
-0.05
-0.02
+0.08
-0.02
-0.01
+0.00
-0.00
-0.02
-0.02
-0.00
+0.10
+0.01
-0.00
-0.03
-0.00

+0.02
-0.20
+0.01
-0.20
-0.05
+0.01
-0.08
+0.09
-0.07
+0.03
-0.01
-0.03
+0.00
+0.18
-0.15
-0.41
-0.49
-0.03
-0.94
+0.03
+0.01

-0.14
-0.02
-0.14
+0.30
+0.29
-0.14
-0.17
-0.09
-0.05
-0.11
-0.02
-0.11
-0.00
-0.03
-0.07
-0.01
-0.00
+0.00
+0.00
-0.02
-0.03

+0.32
+0.01
+0.08
+0.84
-0.05
+0.02
-0.04
-0.09
-0.07
-0.03
-0.02
-0.01
-0.05
-0.05
-0.10
-0.29
-0.38
-0.16
+0.01
-0.51
-0.65

-0.47
-0.65
-0.58
-0.37
+0.35
+0.12
+0.16
+0.20
-0.07
+0.08
+0.01
-0.06
-0.01
-0.01
-0.01
-0.27
-0.00
-0.11
-0.09
+0.03
-0.10

7 14 28 56 112 224 448 672

Node count

HyperX / DFSSSP / linear

+0.00
+0.00
-0.01
+0.02
+0.04
-0.02
-0.01
+0.00
-0.02
-0.01
-0.02
-0.10
-0.02
-0.03
-0.03
+0.02
-0.01
+0.01
-0.01
-0.01
-0.02

+0.00
+0.02
-0.02
-0.01
+0.04
-0.02
-0.00
+0.11
-0.05
-0.04
-0.01
-0.06
-0.03
+0.02
-0.04
-0.04
-0.04
-0.04
-0.07
-0.03
-0.05

-0.07
-0.00
-0.04
-0.04
+0.39
+0.15
+0.14
+0.01
+0.02
-0.00
-0.08
-0.00
+0.01
-0.02
-0.01
-0.00
-0.03
+0.03
+0.00
-0.07
-0.03

+0.13
-0.10
-0.00
+0.01
-0.05
-0.03
-0.05
-0.01
+0.01
-0.08
-0.06
-0.03
+0.02
-0.00
+0.00
-0.03
+0.06
-0.03
+0.02
-0.04
-0.03

-0.07
+0.08
-0.03
-0.11
+0.21
+0.11
+0.06
+0.17
-0.08
+0.06
+0.01
-0.11
+0.02
+0.17
-0.15
-0.02
-0.01
-0.01
+0.04
-0.00
-0.03

+0.11
-0.17
+0.14
+0.10
+0.42
-0.11
+0.08
-0.04
-0.03
+0.01
-0.02
-0.10
-0.06
-0.02
-0.04
-0.02
-0.12
-0.02
-0.07
-0.10
-0.88

+0.18
-0.13
-0.66
+1.03
-0.08
+0.03
-0.04
+0.16
-0.05
+0.18
-0.08
+0.02
-0.03
-0.29
-0.01
-0.02
-0.00
-0.43
-0.09
-0.15
+0.06

+0.23
+0.09
+0.07
+0.06
+0.05
+0.36
+0.45
+0.12
-0.04
+0.02
-0.10
-0.01
-0.07
-0.34
-0.18
-0.35
-0.15
-0.10
-0.00
-0.29
-0.02

7 14 28 56 112 224 448 672

Node count

HyperX / DFSSSP / random

-0.17
-0.16
-0.19
-0.16
-0.13
-0.14
-0.11
-0.22
-0.10
-0.13
-0.11
-0.14
-0.07
-0.03
-0.05
-0.03
-0.00
+0.15
-0.01
-0.20
-0.92

-0.15
-0.11
-0.14
-0.18
-0.10
-0.10
-0.20
+0.03
-0.05
-0.06
-0.06
-0.04
-0.07
+0.00
-0.08
-0.04
-0.06
-0.04
-0.00
+0.02
+0.00

-0.08
-0.10
-0.06
-0.21
+0.29
+0.06
+0.09
-0.02
-0.09
-0.09
-0.04
-0.00
-0.04
-0.04
-0.03
-0.03
-0.04
+0.01
-0.01
-0.07
-0.01

-0.03
-0.20
-0.10
-0.17
-0.08
-0.14
+0.04
-0.10
+0.04
-0.07
-0.06
-0.05
+0.00
-0.02
-0.03
-0.04
+0.06
-0.03
-0.01
-0.07
-0.01

-0.16
-0.15
-0.03
+0.00
+0.11
+0.10
+0.11
+0.13
-0.01
-0.04
-0.00
-0.06
-0.02
+0.13
-0.17
-0.03
-0.02
-0.02
+0.04
-0.01
-0.04

+0.07
+0.05
+0.01
+0.04
+0.41
-0.09
-0.17
-0.11
+0.07
+0.05
+0.05
+0.00
-0.04
-0.09
-0.05
-0.02
-0.02
-0.03
-0.02
-0.04
-0.04

+0.05
+0.07
+0.43
+0.94
-0.34
+0.04
-0.14
+0.02
-0.04
+0.02
-0.47
+0.02
-0.06
-0.06
-0.48
-0.27
-0.00
-0.11
+0.12
-0.08
-0.11

-0.78
+0.10
-0.01
-0.19
+0.08
+0.11
+0.61
+0.10
+0.05
-0.11
-0.09
-0.05
-0.09
-0.05
-0.03
-0.02
+0.04
-0.27
-0.08
-0.23
-0.01

7 14 28 56 112 224 448 672 -1.0

+1.0

Node count

HyperX / PARX / clustered

-0.38
-0.11
-0.10
-0.08
-0.03
-0.07
-0.04
-0.56
-0.04
-0.02
-0.00
-0.01
-0.09
-0.04
-0.07
-0.27
-0.16
-0.16
-0.12
-0.06
-0.06

-0.27
-0.09
-0.10
-0.09
-0.06
-0.07
-0.05
-0.62
-0.17
-0.08
-0.09
-0.04
-0.11
-0.03
-0.08
-0.03
-0.37
-0.21
-0.18
-0.13
-0.03

-0.56
-0.14
-0.08
-0.12
+0.31
+0.08
+0.10
-0.63
-0.03
-0.06
-0.09
-0.01
-0.07
-0.09
-0.03
-0.04
-0.06
-0.31
-0.20
-0.21
-0.18

-0.38
-0.13
-0.17
-0.15
-0.07
-0.10
+0.03
-0.66
-0.09
-0.03
-0.08
-0.04
-0.29
-0.08
-0.07
-0.05
+0.10
-0.03
-0.25
-0.18
-0.18

-0.50
-0.02
-0.04
-0.25
+0.14
+0.03
+0.08
-0.59
-0.11
+0.02
-0.08
-0.10
-0.04
+0.13
-0.07
-0.06
-0.02
-0.17
-0.13
-0.91
-0.89

-0.67
+0.07
-0.04
+0.20
+0.14
-0.16
-0.09
-0.69
-0.02
-0.00
-0.02
-0.12
-0.13
-0.11
-0.08
-0.21
-0.17
-0.06
-0.07
-0.19
-0.29

-0.64
+0.15
+0.35
+0.54
+0.10
+0.10
-0.14
-0.58
+0.05
+0.13
-0.04
+0.09
-0.44
-0.37
-0.10
-0.05
-0.09
-0.16
-0.06
-0.13
-0.33

-0.67
-0.16
+0.00
-0.13
+0.08
-0.04
+0.34
-0.68
+0.14
-0.12
-0.03
-0.14
-0.70
-0.58
-0.62
-0.06
-0.06
-0.14
-0.23
-0.28
-0.42

R
el

at
iv

e 
P

er
fo

ra
m

nc
e 

G
ai

n

(e) Allreduce

Figure 4: Relative performance gain compared to Fat-Tree / ftree / linear combination (cf. Sec. 4.4.3) for variousMPI collectives
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Figure 4: Relative performance gain compared to Fat-Tree / ftree / linear combination (cf. Sec. 4.4.3) for variousMPI collectives
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(a) Baidu’s Allreduce (relative gain over Fat-Tree / ftree / linear)
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Figure 5: Rest of network benchmarks;Whisker plots for 10 runs show in Fig. 5b and 5c (numbers above each Figure indicated
relative performance gain over Fat-Tree / ftree / linear for the best run of both combinations); See Sec. 5.1 for detailed analysis

and placement configurations. All absolute best values are then
compared relatively to our baseline configuration, which is Fat-
Tree with ftree routing and linear placement. The relative gain (or
loss) [28] is highlighted graphically and numerically in each box.

Our HyperX network with either DFSSSP routing or randomized
placement appears to be on par with the baseline for Broadcast and
Reduce (Figure 4a, 4d), while outperforming the Fat-Tree for Gather
with messages of 512 KiB or more, see Figure 4b, or for Scatter on
larger node counts and almost all message sizes, see Figure 4c.

In contrast, we observe that MPI Allreduce — at least for mes-
sages below 4MiB — is slightly biased towards our 3-level Fat-Tree.
Baidu’s ring-based Allreduce implementation (cf. Figure 5a) reveals
a noteworthy problem with ftree routing, but not Fat-Tree itself,
since SSSP mitigates the problem equally well as the HyperX.

The Alltoall performance (visualised in Figure 4f; missing boxes
indicate time or memory constraints), shows the highest spikes in
both directions. The 14-node case for “HyperX / DFSSSP / linear”,
for example, echos exactly our analysis of Figure 1. These 14 nodes

are attached to one Fat-Tree switch, but attached to two HyperX
switches which are interconnected by only a single QDR link.

On average, our PARX routing is the least effective options for
these micro-benchmarks shown in Figure 4, especially for the lower
spectrum of investigated message sizes. It should be noted, that we
are switching from the relative data presentation to a direct com-
parison based on whisker plots — showing minimum, maximum,
median, and 25th/75th percentile of our ten runs per measurement
configuration — starting from Figure 5b. The relative gain over Fat-
Tree is still visible in the numbers listed above each plot. Looking
at Figure 5b, we see that PARX slows down the Barrier operation
by 2.8x–6.9x, resulting in negative gains between -0.65 and -0.85
compared to the baseline. Specifically, the 7-node case (for which
clustered and linear hostlists are identical, i.e., all nodes are at-
tached to 1 HyperX switch) suggests a severe performance loss
when moving from ob1 to the bfo PML (see Section 3.2.4 for de-
tails on our bfo dependency). We speculate that bfo is less tuned
compared to the ob1 default, and hence, is likely the root cause of
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(h) qb@ll

0

150

300

450

600

750

900

4 8 16 32 64 12
8

25
6

51
2 4 8 16 32 64 12
8

25
6

51
2 4 8 16 32 64 12
8

25
6

51
2 4 8 16 32 64 12
8

25
6

51
2 4 8 16 32 64 12
8

25
6

51
2

+
0.

00
+

0.
00

+
0.

01
-0

.0
0

-0
.0

0
-0

.0
4

+
0.

95

-0
.0

0
-0

.0
0

-0
.0

8
-0

.1
4

-0
.0

9
-0

.1
0

+
0.

63

-0
.0

0
-0

.0
0

-0
.0

2
-0

.0
2

-0
.1

0
-0

.1
6

+
0.

32
+

In
f

+
0.

00
-0

.0
1

-0
.0

1
-0

.0
6

-0
.0

3
-0

.0
0

+
0.

87
+

In
f

K
er

n
el

 R
un

tim
e 

[in
 s

]

Number of compute nodes

(i) SWFFT
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(j) HPL
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(k) HPCG
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Figure 6: Proxy-applications (Fig. 6a–6i; lower is better) and x500 benchmarks (Fig. 6j–6l; higher is better); Whisker plots for
10 runs; Missing data points for runs exceeding 15min time limit; Legend same as in Fig. 5b; See Sec. 5.2 for detailed analysis
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Figure 7: Capacity run for all five combinations (cf. Sec. 4.4.3) over a 3h time period for 14 concurrently running applications
(using 32 or 56 nodes) while occupying 98.8% of the supercomputer; See Sec. 4.2 for abbreviations and Sec. 5.3 for data analysis

aforementioned regression for Barrier and other collectives. Our
theory is further strengthened by analyzing the MPI Gather and
Scatter plots. One can see that, with increasing message sizes, the
disparity to the “Fat-Tree / ftree / linear” baseline diminishes.

For 1MiB messages of Netgauge’s eBB benchmark, where soft-
ware overhead diminishes, we see the advantage of the non-minimal
routing by PARX compared to DFSSSP for dense node allocations on
the HyperX. Especially, for the previously discussed 14-node case,
we almost double (≈1.9x) the effective bisection bandwidth. Fur-
thermore, PARX outperforms Fat-Tree / ftree (with 2%–6%) for the
mid-range of the nodes counts. We expected the shown regression
of PARX for full system runs of eBB, since artificially increasing the
path length for large messages creates more congestion on a global
scale, instead of avoiding localized bottlenecks. Whether these char-
acteristics for pure MPI benchmarks translate into similar results
for applications, is subject of the following two sections.

5.2 Real-world Workloads & x500 Benchmarks
Our whisker plots in Figure 6 comprise the results for the proxy-
applications, where runtime of the solver/kernel is shown (lower
is better in Fig. 6a–6i). In addition, Figures 6j–6l present the com-
putational performance (higher is better) for the x500 benchmarks.
Furthermore, all benchmarks, except NTChem, demonstrate weak-
scaling behavior based on the inputs outlined in Section 4.

It should be noted, that we modify the scaling for three bench-
marks, listed in Table 2. To complete runs within the given 15min
walltime limit, we reduce FFVC’s cuboid to 64 × 64 × 64 for runs
on more than 64 nodes. The resulting runtime drop from 64 to 128
nodes is clearly visible. Similarly, we reduce qb@ll’s initial input
from 32 atoms to 16 gold atoms for the 672-node evaluation, and
we shrink the matrix for HPL down to 0.25 GiB per process for 224
nodes and beyond. MILC on 512 nodes resists all attempts to get
the runtime within the limit, so we omit the 512-node case.

The Figure 6 shows, when looking at the best of ten iterations,
that our HyperX network — with either appropriate routing or
placement strategy — is on par with the Fat-Tree baseline. The
examples, where the HyperX mostly performs within ±1% (or no-
tably better), include: AMG, FFVC, MILC (with “DFSSSP / linear”),
MiniFE, mVMC, and NTChem / qb@ll (both for small and mid-scale
runs). Moreover, we experience a reduction in run-to-run variability
in some instances and when using the HyperX fabric, most conspic-
uous for MILC and SWFFT when using DFSSSP routing together
with the linear rank placement. The latter benchmark includes
another interesting and unexpected – based on previously shown
results — data point: The HyperX together with PARX routing is

the only option to consistently scale the SWFFT benchmark to 512
compute nodes. Here, all 10 executions finish in under 233 s.

While our PARX routing results in a clear communication la-
tency disadvantage over the alternatives for pure network bench-
marks, we see a less severe, but noticeable, impact of the less tuned
bfo PML for real-world workloads. The reason is twofold: firstly,
these applications only spend a fraction of the runtime in commu-
nication routines (typically an average of 20% if sampled across
many proxy-applications [42]), and hence the communication per-
formance decrease is overall less salient. Secondly, pure MPI bench-
marks, including our results shown in Figure 4, tend to focus on
the best case rather than the average performance, which can be
influenced by system noise [32] and caching effects [55].

The results for the remaining three benchmarks, HPL, HPCG, and
Graph500, induce comparable inferences. For example, the random
rank placement on the HyperX for HPL improves the achievable
Gflop/s performance by 46%, but our relatively small input matrices
(to reduce runtime) and run-to-run variability might account for
this discrepancy. Although, we also see improvements of up to 36%
and 7% for HPCG and Graph500, respectively, when randomly
assigning nodes and using HyperX with DFSSSP routing.

5.3 Capacity / System Throughput Evaluations
The following experiments, as outlined in Section 4.4.2, are designed
as qualitative comparison between the two topologies to potentially
identify weaknesses of the HyperX which can aid future research
or development. For a quantitative comparison, one should use
simulation-based evaluations instead, similar to Yang et al. [83],
since these offer repeatability and fine-grained inspection capabili-
ties into timings, routers, traffic, and congestion, etc.

Figure 7 shows the number of completed application runs in the
given 3 h time period, and compared across our five test setups.
While the random placement with DFSSSP results in the highest
gain over Fat-Tree for x500 benchmarks, we observe the opposite
in Figure 7 when concurrently running multiple applications. Here,
it results in the lowest number (14) of executed runs for MILC,
probably due to inter-job interference, and overall the combination
of “HyperX / DFSSSP / linear” yields the highest number of finished
jobs, outperforming the Fat-Tree by 12.7%, followed by PARX.

The “Fat-Tree / SSSP / clustered” combination appears to be
the least effective. However, the drop in completed runs can be
(almost entirely) attributed to IMB’s Multi-PingPong (MuPP) and
the Graph500 benchmark, which seem particularly sensitive to the
clustered allocation scheme. When comparing the HyperX with
linear and clustered, we do not see this sensitivity in these two
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applications, but instead it is visible for the MILC benchmark. This
drop in runs for MILC, also visible for “HyperX / DFSSSP / random”,
can be attributed to both placement and routing. Referring back to
Figure 6d, we already saw slowdown and high runtime variability
issues for the 32-node case while running MILC in isolation.

The random placement (together with static, shortest-path rout-
ing) on our HyperX is the least effective method among our mit-
igation strategies, as introduced in Section 3. This method only
outperformed the alternatives for Netgauge’s effective bisection
bandwidth test (cf. Figure 5c) and the Graph500 benchmark, see
Figure 6l. Similarly, in the multi-application environment the bene-
fit is limited to the MuPP benchmark, by yielding 16% more runs
compared to the linear allocation. Hence, based on our data, future
research research may be needed: (1) to analyze and mitigate the
slowdown of MILC, and (2) to determine which allocation scheme
is the best match to an adaptive routing for HyperX topologies.

Overall, instead of the expected slowdowns for all applications on
a statically routed HyperX, we see more evidence for the competi-
tiveness of the HyperX topology (vs. Fat-Tree), presumably fostered
by its structure, the shortest-path routing and dense placement. The
resulting isolation for smaller job sizes may reduce inter-job inter-
ference more than it actually creates congestion due to adverse (or
worst case) traffic patterns, as discussed in Sections 1 and 2.

6 RELATEDWORK
The theoretical construct of Fat-Trees was improved over time,
from single-rooted trees [46], over multi-rooted k-ary n-trees [66],
to eXtended Generalized Fat-Trees (XGFT) [61] and Real-Life or
Parallel-Port Fat-Trees (RLFT / PPFT) [86]. Other serious contenders
to connect modern and future supercomputers and data-centers are
the Dragonfly [41], deployed in different shapes, e.g., IBM’s Blue
Waters PERCS network [5], or Cray’s Aries network for Theta [65].
Alternatives to these low-diameter and adaptively routed topologies
are mostly torus-based, e.g., Pleiades’ HyperCube topology [38],
the 5D BlueGene/Q networks [11] or the 6D Tofu used in K [4].

Further topologies have been proposed, but only studied theo-
retically. The Slimfly [9, 81], Express-Mesh [37], and semi-random
Skywalk [22] are just a few of them. Usually, cost prohibits large net-
work test beds. Therefore researchers utilize simulations [36, 48, 82],
smaller setups [21, 80], use different systems to compare topolo-
gies [38], or rely on inexpensive hardware, such as Raspberry Pi [39],
to explore various topologies, network sizes and deployment con-
figurations, e.g., tapering of the tree, multi-plane setups, and/or
routing options, etc. However, such setups might have too idealis-
tic assumptions for simulations, overlook network-related issues
which only manifest at scale, or lack accuracy because of either ar-
chitectural variations or an unrepresentative compute-to-network
performance ratio. To the best of our knowledge, we are first to
rewire a large-scale HPC system to perform a true 1-to-1 compari-
son between a state-of-the-art and an experimental topology.

The realistic choice for HyperX are adaptive routings, such
as Valiant’s algorithm (VAL) or Universal Global Adaptive Load-
balancing (UGAL) [2], or the Dimensionally-Adaptive, Load-bal-
anced (DAL) algorithm [3]. For deterministically routed networks
(e.g., InfiniBand fabrics), only a few topology-agnostic options exist
which satisfy the deadlock-freedom criterion, such as DFSSSP or

SAR [14, 17], LASH [75], or Nue routing [16]. Our PARX routing
is the first communication- and topology-aware alternative for 2D
HyperX topologies, utilizing IB’s multi-pathing feature through
LMC. Similar approaches, to avoid hot spots [80] — but not to in-
tentionally take longer paths — or to avoid deadlock-freedom [49]
exist. Other proposals to exploit multi-pathing [50], to introduce
pattern-awareness [70], or mitigate existing bottlenecks [76], are
either not compliant with IB specifications, or do not preemptively
adjusting to communication demands, like our PARX routing.

7 CONCLUSION
The high-speed interconnection network, connecting the com-
pute nodes of modern supercomputers, plays a crucial role in
achieving scalability and throughput for scientific applications. We
build a large-scale, 672-node HPC system with dual-plane intercon-
nect, one using a 3-level Fat-Tree topology and the other using a
12x8 2D HyperX, from the remains of a decommissioned system.

We applied a broad set of MPI and HPC benchmarks, and proxy-
application for real HPC workloads — usually used during system
procurement — to stress both network topologies in isolated scala-
bility and shared capacity runs. The collected data from our 1-to-1
comparison implies that even a HyperX topology with roughly
half-bisection bandwidth, and hence drastically reduced deploy-
ment costs, can compete with our 18-ary 3-tree, which theoretically
offers more than full-bisection due to the reduced node count at
the leafs. This result is even more astonishing, considering that
we only had deprecated IB equipment (QDR type) available, which
does not feature the required adaptive routing for the HyperX.

We investigated two strategies: MPI rank placement and our
novel PARX routing, to circumvent the bottleneck arising from
applying a shortest-path, static routing to a HyperX. This PARX
prototype shows potential, but will be replaced by true adaptive
routing in future HyperX deployments, yielding even better results
than ours. Nevertheless, we look forward to seeing that our inten-
tional use of minimal paths and detours in static routings and/or
the optimization for specific traffic patterns will be reused.

Our evaluation toolchain, including PARX and collected data, is
readily available underhttps://gitlab.com/domke/t2hx for down-
load, giving other researchers the option to reuse and adapt our
routing approach or to perform similar studies.
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A ARTIFACT DESCRIPTION
SUMMARY OF THE EXPERIMENTS REPORTED
We developed a framework of scripts and git submodules to man-
age the R&D of the routing engine, to set up the benchmarking
infrastructure, and to perform the measurements. After cloning our
repository https://gitlab.com/domke/t2hx (or downloading the arti-
facts from https://doi.org/10.5281/zenodo.3375075), one has access
to all benchmarks (see Table 2), patches, and scripts. Only minor
modifications to the configuration files should be necessary, such
as changing host names, or adjustments to different node counts for
the benchmarks, before testing on another system. If users deviate
from our OS version (CentOS Linux release 7.4.1708) then some
additional changes might be required.

Cloning instruction for framework:
• git clone –recurse-submodules https://gitlab.com/domke/t2hx

Required access rights:
• requires root level access when changing InfiniBand routing
with installed subnet manager
• maybe root when interfacing with the admin node which
runs our novel PARX routing
• user level to benchmark with other/existing routing engines

OS-level dependencies (based on our CentOS 7.4):
• cmake autoconf automake libtool cpupowerutils screen pdsh
systemd-devel libnl3-devel valgrind-devel bison flex gcc gcc-
c++ gcc-gfortran wget libudev-devel zlib-devel libstdc++-
devel pciutils tcl tcl-devel tk glib2-devel kernel-devel vim
rpm-build pkgconfig make python2-numpy numactl-devel
lsof psmisc git swig python-devel python2-clustershell rdma-
core-devel

HowTo use this framework (follow these instructions):
Installation:
• ./inst/_init.sh routing on a admin node, which will
run OpenSM with PARX (req. root)
• ./inst/_init.sh on one compute node with access to par-
allel FS or NFS

Generation of host lists for MPI:
• modify and/or re-run ./inst/_gethostlists.sh

Compile each benchmark:
• execute ./inst/*.sh for all files (except those starting with
underscore)

Adjust configuration if necessary:
• change path to Intel compiler: conf/intel.cfg
• change settings, such as input/#nodes/etc., per benchmark if
desired: conf/*.cfg
• select topology/routing/placement to test different network:
conf/t2hx.sh
• change RUNMODE when switching from capability to capacity
runs: conf/t2hx.sh
• change NumOMP, HXSMHOST, OSM0TRIGGER, etc., if needed in
file: conf/t2hx.sh

Running all benchmarks:
• execute ./run/*.sh for every benchmark

A few hints for working with the framework:
(1) if cloned directory is not in home/NFS or parallel FS, then

additional steps will be needed
(2) install scripts set benchmark version (via git commit hash)

to exact version used in the paper
(3) other versioning information for libraries, kernel, etc. will

be listed in appendix AE
(4) setup assumes mlx4_* naming of HCA, and 1st HCA is at-

tached to Fat-Tree, and 2nd to HyperX
(5) further changes may be needed (to conf/* and run/*) if the

statement above is not true
Explanation of relevant directory structure:

./

• contains sub-directories for each benchmark
conf/

• configuration files for benchmarks (inputs, node counts,
paths, etc) and host files

conf/comm4parx.tgz

• contains communication matrices for all benchmarks (and
sizes) needed as inputs for PARX
• extracts into conf/comm4parx/ sub-directory

conf/hostfiles.tgz

• our host files for linear, clustered, and random placement (as
used for the paper)
• extracts files directly into conf/

conf/opensm/

• OpenSM configurations for Fat-Tree (ftree/sssp routing), and
HyperX (dfsssp/parx routing)
• guid files of HCAs as required by routings (adjust to system)
• file *.guid2lid.cfgmust be changed to assign LIDs/GUIDs
to correct quadrants for PARX
• LID policy for quadrants:Q0 := 0 . . . 999,Q1 := 1000 . . . 1999,
Q2 := 2000 . . . 2999, Q3 := 3000 . . . 3999
• LID policy for switches in quadrants: see above but add 10000

dep/

• multiple auxiliary scripts for managing, pre-/post-processing
the measurements
• additional library dependencies, e.g. OpenMPI (automatically
compiled by framework)

inst/

• scripts to install/compile dependencies and benchmarks
log/

• directory will contain outputs of the benchmarks
log/*.tbz2

• all outputs of our benchmarking for the paper; extracts into
per-BM sub-directory

patches/

• req. patches for: benchmark timing, OpenSM, OpenMPI, etc.
run/

• scripts to execute the benchmarks
paper/

• processed logs, tex files, figures, gnuplot stuff, etc.
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ARTIFACT AVAILABILITY
Software Artifact Availability: (One of these options remains.)

All author-created software artifacts are maintained in a public
repository under an OSI-approved license.

Hardware Artifact Availability: (One of these options remains.)
There are no author-created hardware artifacts.

Data Artifact Availability: (One of these options remains.) All
author-created data artifacts are maintained in a public repository
under an OSI-approved license.

Proprietary Artifacts: (One of these options remains.) No author-
created artifacts are proprietary.

List of URLs and/or DOIs where artifacts are available:
https://doi.org/10.5281/zenodo.3375075
https://gitlab.com/domke/t2hx

BASELINE EXPERIMENTAL SETUP, AND
MODIFICATIONS MADE FOR THE PAPER

Relevant hardware details: Hewlett-Packard HP ProLiant SL390s
G7 compute nodes, Intel Xeon X5670 CPUs, NVIDIA Tesla K20X
GPUs, QDR InfiniBand HCAs, Voltaire Grid Director 4700, Voltaire
Grid Director 4036, 3-level full-bisection bandwidth Fat-Tree and
12x8 2D HyperX network topology

Operating systems and versions: CentOS Linux release 7.4.1708
running kernel 3.10.0-693.21.1

Compilers and versions: Gnu Fortran/C/C++ 4.8.5 and Intel Par-
allel Studio XE (version 2018; update 3)

Applications and versions: ECP Proxy-Apps (AMG, CoMD,miniFE,
SWFFT), RIKEN R-CCS Fiber Miniapps (FFVC, mVMC, NTChem),
Trinity benchmark (MILC), CORAL benchmark (qb@ll), Graph500,
HPL, HPCG, Intel MPI Benchmarks, Netgauge, mpiGraph, Baidu
DeepBench [all versions tagged by git commit hashes or download
versions]

Libraries and versions: OpenMPI v1.10.7, OFED v4.8-2, OpenSM
v3.3.21, FFTW v3.3.4, LAPACK v3.8.0, ScaLAPACK v2.0.2, BLAS
v3.8.0, Xerces-C v3.2.2, METIS v5.1.0, libcsv v3.0.3, TAU v2.27, ibprof
v0, OTF v1.12.5

Key algorithms: ftree, SSSP, DFSSSP, PARX

Input datasets and versions: as provided by applications and
benchmarks

Paper Modifications: Modifications to applications and bench-
marks are as follows:

(1) add walltime measurement around main solver or kernel of
the application benchmarks;

(2) remove CUDA dependency from Baidu’s Allreduce and re-
duce iteration counter for some sizes;

(3) allow IMB to test very large messages for collectives and add
SleepyAllreduce test case;

(4) patch issue in mVMC to not call MPI inside of OMP regions;
and

(5) fix compilation bug in qb@ll.

Modifications to OpenSM are as follows:

(1) add PARX routing to read and adapt to communication-
demand matrix; and

(2) added re-routing trigger mechnism to semi-automatically
run PARX for changing demands.

Modifications to OpenMPI are as follows:

(1) fix bug in service level (SL) inquiry fromOpenSM as required
for VL-based deadlock-freedom;

(2) changed BFO PML to choose correct path based on message
size and HyperX quadrant; and

(3) add PERUSE/ibprof support to collect low level point-to-
point data needed for PARX routing.

Output from scripts that gathers execution environment informa-
tion.

LSB Version: :core-4.1-amd64:core-4.1 ⌋
-noarch↪→

Distributor ID: CentOS
Description: CentOS Linux release 7.4.1708

(Core)↪→

Release: 7.4.1708
Codename: Core
Linux r60n00.mng.t2.gsic.titech.ac.jp

3.10.0-693.21.1.el7.x86_64 #1 SMP Wed Mar 7
19:03:37 UTC 2018 x86_64 x86_64 x86_64 GNU/Linux

↪→

↪→

Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 24
On-line CPU(s) list: 0-23
Thread(s) per core: 2
Core(s) per socket: 6
Socket(s): 2
NUMA node(s): 2
Vendor ID: GenuineIntel
CPU family: 6
Model: 44
Model name: Intel(R) Xeon(R) CPU

X5670 @ 2.93GHz↪→

Stepping: 2
CPU MHz: 1596.000
CPU max MHz: 2927.0000
CPU min MHz: 1596.0000
BogoMIPS: 5867.31
Virtualization: VT-x
L1d cache: 32K
L1i cache: 32K
L2 cache: 256K
L3 cache: 12288K
NUMA node0 CPU(s): 0,2,4,6,8,10,12,14,16,18,20,22
NUMA node1 CPU(s): 1,3,5,7,9,11,13,15,17,19,21,23
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Flags: fpu vme de pse tsc msr pae mce
cx8 apic sep mtrr pge mca cmov pat pse36 clflush
dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx
pdpe1gb rdtscp lm constant_tsc arch_perfmon pebs
bts rep_good nopl xtopology nonstop_tsc
aperfmperf pni pclmulqdq dtes64 monitor ds_cpl
vmx smx est tm2 ssse3 cx16 xtpr pdcm pcid dca
sse4_1 sse4_2 popcnt aes lahf_lm epb spec_ctrl
ibpb_support tpr_shadow vnmi flexpriority ept
vpid dtherm ida arat

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

MemTotal: 55641952 kB
MemFree: 54156712 kB
MemAvailable: 54312284 kB
Buffers: 0 kB
Cached: 609708 kB
SwapCached: 0 kB
Active: 148016 kB
Inactive: 485328 kB
Active(anon): 27248 kB
Inactive(anon): 120556 kB
Active(file): 120768 kB
Inactive(file): 364772 kB
Unevictable: 0 kB
Mlocked: 0 kB
SwapTotal: 0 kB
SwapFree: 0 kB
Dirty: 0 kB
Writeback: 0 kB
AnonPages: 23652 kB
Mapped: 19524 kB
Shmem: 124152 kB
Slab: 106188 kB
SReclaimable: 43388 kB
SUnreclaim: 62800 kB
KernelStack: 5280 kB
PageTables: 4172 kB
NFS_Unstable: 0 kB
Bounce: 0 kB
WritebackTmp: 0 kB
CommitLimit: 27820976 kB
Committed_AS: 211348 kB
VmallocTotal: 34359738367 kB
VmallocUsed: 282396 kB
VmallocChunk: 34327506940 kB
HardwareCorrupted: 0 kB
AnonHugePages: 0 kB
HugePages_Total: 0
HugePages_Free: 0
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 2048 kB
DirectMap4k: 207036 kB
DirectMap2M: 6074368 kB
DirectMap1G: 50331648 kB
XDG_SESSION_ID=162
HOSTNAME=r60n00.mng.t2.gsic.titech.ac.jp
TERM=screen

SHELL=/bin/bash
HISTSIZE=1000
USER=root
LS_COLORS=rs=0:di=01;34:ln=01;36:mh=00:pi=40;33:so=0 ⌋

1;35:do=01;35:bd=40;33;01:cd=40;33;01:or=40;31;0 ⌋
1:mi=01;05;37;41:su=37;41:sg=30;43:ca=30;41:tw=3 ⌋
0;42:ow=34;42:st=37;44:ex=01;32:*.tar=01;31:*.tg ⌋
z=01;31:*.arc=01;31:*.arj=01;31:*.taz=01;31:*.lh ⌋
a=01;31:*.lz4=01;31:*.lzh=01;31:*.lzma=01;31:*.t ⌋
lz=01;31:*.txz=01;31:*.tzo=01;31:*.t7z=01;31:*.z ⌋
ip=01;31:*.z=01;31:*.Z=01;31:*.dz=01;31:*.gz=01; ⌋
31:*.lrz=01;31:*.lz=01;31:*.lzo=01;31:*.xz=01;31 ⌋
:*.bz2=01;31:*.bz=01;31:*.tbz=01;31:*.tbz2=01;31 ⌋
:*.tz=01;31:*.deb=01;31:*.rpm=01;31:*.jar=01;31: ⌋
*.war=01;31:*.ear=01;31:*.sar=01;31:*.rar=01;31: ⌋
*.alz=01;31:*.ace=01;31:*.zoo=01;31:*.cpio=01;31 ⌋
:*.7z=01;31:*.rz=01;31:*.cab=01;31:*.jpg=01;35:* ⌋
.jpeg=01;35:*.gif=01;35:*.bmp=01;35:*.pbm=01;35: ⌋
*.pgm=01;35:*.ppm=01;35:*.tga=01;35:*.xbm=01;35: ⌋
*.xpm=01;35:*.tif=01;35:*.tiff=01;35:*.png=01;35 ⌋
:*.svg=01;35:*.svgz=01;35:*.mng=01;35:*.pcx=01;3 ⌋
5:*.mov=01;35:*.mpg=01;35:*.mpeg=01;35:*.m2v=01; ⌋
35:*.mkv=01;35:*.webm=01;35:*.ogm=01;35:*.mp4=01 ⌋
;35:*.m4v=01;35:*.mp4v=01;35:*.vob=01;35:*.qt=01 ⌋
;35:*.nuv=01;35:*.wmv=01;35:*.asf=01;35:*.rm=01; ⌋
35:*.rmvb=01;35:*.flc=01;35:*.avi=01;35:*.fli=01 ⌋
;35:*.flv=01;35:*.gl=01;35:*.dl=01;35:*.xcf=01;3 ⌋
5:*.xwd=01;35:*.yuv=01;35:*.cgm=01;35:*.emf=01;3 ⌋
5:*.axv=01;35:*.anx=01;35:*.ogv=01;35:*.ogx=01;3 ⌋
5:*.aac=01;36:*.au=01;36:*.flac=01;36:*.mid=01;3 ⌋
6:*.midi=01;36:*.mka=01;36:*.mp3=01;36:*.mpc=01; ⌋
36:*.ogg=01;36:*.ra=01;36:*.wav=01;36:*.axa=01;3 ⌋
6:*.oga=01;36:*.spx=01;36:*.xspf=01;36:

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

PATH=/usr/local/sbin:/usr/local/bin:/sbin:/bin:/usr/ ⌋
sbin:/usr/bin:/root/bin:/home/usr0/domke-j-aa/in ⌋
xi-3.0.32-1:/home/usr0/domke-j-aa/lshw-B.02.18/s ⌋
rc

↪→

↪→

↪→

MAIL=/var/spool/mail/root
PWD=/home/usr0/domke-j-aa/t2hx/paper/data/sc-author- ⌋

kit↪→

HISTCONTROL=ignoredups
HOME=/root
SHLVL=2
LOGNAME=root
LESSOPEN=||/usr/bin/lesspipe.sh %s
_=/bin/env
System: Host: r60n00.mng.t2.gsic.titech.ac.jp

Kernel: 3.10.0-693.21.1.el7.x86_64 x86_64 bits:
64 Console: N/A

↪→

↪→

Distro: CentOS Linux release 7.4.1708 (Core)
Machine: Type: Multimount-chassis System: HP

product: ProLiant SL390s G7 v: N/A serial:
JPT0333WTP

↪→

↪→

Mobo: HP model: N/A serial: JPT0333WTP

BIOS: HP v: P69 date: 05/21/2018↪→
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CPU: Topology: 2x 6-Core model: Intel Xeon X5670

bits: 64 type: MT MCP SMP L2 cache: 24.0 MiB↪→

Speed: 1862 MHz min/max: 1596/2927 MHz Core
speeds (MHz): 1: 2927 2: 1596 3: 1729
4: 1862 5: 1596 6: 2394

↪→

↪→

7: 1729 8: 1729 9: 1729 10: 1596 11: 1596
12: 1596 13: 1596 14: 1596 15: 1596 16:
1596 17: 1596 18: 1596

↪→

↪→

19: 1596 20: 1729 21: 1729 22: 1596 23:

1596 24: 1729↪→

Graphics: Device-1: Advanced Micro Devices [AMD/ATI]

ES1000 driver: radeon v: kernel↪→

Device-2: NVIDIA GK110GL [Tesla K20Xm]

driver: nouveau v: kernel↪→

Device-3: NVIDIA GK110GL [Tesla K20Xm]

driver: nouveau v: kernel↪→

Device-4: NVIDIA GK110GL [Tesla K20Xm]

driver: nouveau v: kernel↪→

Display: server: No display server data

found. Headless machine? tty: 126x20↪→

Message: Unable to show advanced data.

Required tool glxinfo missing.↪→

Audio: Message: No Device data found.
Network: Device-1: Intel 82576 Gigabit Network

driver: igb↪→

IF: eth0 state: up speed: 1000 Mbps duplex:

full mac: 78:e7:d1:20:fb:d0↪→

Device-2: Intel 82576 Gigabit Network

driver: igb↪→

IF: eth1 state: down mac: 78:e7:d1:20:fb:d1
Device-3: Mellanox MT26438 [ConnectX VPI

PCIe 2.0 5GT/s - IB QDR / 10GigE
Virtualization+] driver: mlx4_core

↪→

↪→

IF: eth2 state: down mac: 78:e7:d1:20:fb:d6
Device-4: Mellanox MT26428 [ConnectX VPI

PCIe 2.0 5GT/s - IB QDR / 10GigE]
driver: mlx4_core

↪→

↪→

IF: ib0 state: down mac:
80:00:02:08:fe:80:00:00:00:00:00:00:0 ⌋
0:02:c9:03:00:0b:0c:ad

↪→

↪→

IF-ID-1: ib1 state: down mac:
80:00:02:09:fe:80:00:00:00:00:00:00:0 ⌋
0:02:c9:03:00:0b:0c:ae

↪→

↪→

IF-ID-2: ib2 state: down mac:
80:00:02:48:fe:81:11:00:00:00:00:00:7 ⌋
8:e7:d1:03:00:20:fb:d5

↪→

↪→

Drives: Local Storage: total: 111.80 GiB used: 0

KiB (0.0%)↪→

ID-1: /dev/sda model: MK0060EAVDR size:

55.90 GiB↪→

ID-2: /dev/sdb model: MK0060EAVDR size:

55.90 GiB↪→

Partition: ID-1: / size: 111.74 GiB used: 14.08 GiB
(12.6%) fs: nfs4 remote:
10.4.0.132:/opt/osimages/centos/7.4

↪→

↪→

Sensors: Message: No ipmi sensors data was found.
Missing: Required tool sensors not

installed. Check --recommends↪→

Info: Processes: 289 Uptime: 4d 22h 40m Memory:
53.06 GiB used: 869.8 MiB (1.6%) Init: systemd
runlevel: 5

↪→

↪→

Shell: collect_environ inxi: 3.0.32
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda 8:0 0 55.9G 0 disk
sdb 8:16 0 55.9G 0 disk
[0:0:0:0] disk ATA MK0060EAVDR HPG6

/dev/sda 60.0GB↪→

[1:0:0:0] disk ATA MK0060EAVDR HPG6

/dev/sdb 60.0GB↪→

H/W path Device Class Description
=====================================================

system ProLiant SL390s

G7 (605081-B21)↪→

/0 bus Motherboard
/0/0 memory 64KiB BIOS
/0/400 processor Intel(R)

Xeon(R) CPU X5670 @ 2.93GHz↪→

/0/400/710 memory 192KiB L1

cache↪→

/0/400/720 memory 1536KiB L2

cache↪→

/0/400/730 memory 12MiB L3 cache
/0/406 processor Intel(R)

Xeon(R) CPU X5670 @ 2.93GHz↪→

/0/406/716 memory 192KiB L1

cache↪→

/0/406/726 memory 1536KiB L2

cache↪→

/0/406/736 memory 12MiB L3 cache
/0/1000 memory System Memory
/0/1000/0 memory 4GiB DIMM

DDR3 Synchronous 1333 MHz (0.8 ns)↪→

/0/1000/1 memory 4GiB DIMM

DDR3 Synchronous 1333 MHz (0.8 ns)↪→

/0/1000/2 memory 4GiB DIMM

DDR3 Synchronous 1333 MHz (0.8 ns)↪→

/0/1000/3 memory 4GiB DIMM

DDR3 Synchronous 1333 MHz (0.8 ns)↪→

/0/1000/4 memory 4GiB DIMM

DDR3 Synchronous 1333 MHz (0.8 ns)↪→

/0/1000/5 memory 4GiB DIMM

DDR3 Synchronous 1333 MHz (0.8 ns)↪→

/0/1001 memory System Memory
/0/1001/0 memory 2GiB DIMM

DDR3 Synchronous 1333 MHz (0.8 ns)↪→

/0/1001/1 memory 8GiB DIMM

DDR3 Synchronous 1333 MHz (0.8 ns)↪→

/0/1001/2 memory 2GiB DIMM

DDR3 Synchronous 1333 MHz (0.8 ns)↪→
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/0/1001/3 memory 8GiB DIMM

DDR3 Synchronous 1333 MHz (0.8 ns)↪→

/0/1001/4 memory 2GiB DIMM

DDR3 Synchronous 1333 MHz (0.8 ns)↪→

/0/1001/5 memory 8GiB DIMM

DDR3 Synchronous 1333 MHz (0.8 ns)↪→

/0/b memory
/0/c memory
/0/100 bridge 5520 I/O Hub

to ESI Port↪→

/0/100/1 bridge 5520/5500/X58

I/O Hub PCI Express Root Port 1↪→

/0/100/1/0 eth0 network 82576

Gigabit Network Connection↪→

/0/100/1/0.1 eth1 network 82576

Gigabit Network Connection↪→

/0/100/2 bridge 5520/5500/X58

I/O Hub PCI Express Root Port 2↪→

/0/100/3 bridge 5520/5500/X58

I/O Hub PCI Express Root Port 3↪→

/0/100/3/0 ib1 network MT26428

[ConnectX VPI PCIe 2.0 5GT/s - IB QDR / 10GigE]↪→

/0/100/4 bridge 5520/X58 I/O

Hub PCI Express Root Port 4↪→

/0/100/5 bridge 5520/X58 I/O

Hub PCI Express Root Port 5↪→

/0/100/5/0 eth2 network MT26438
[ConnectX VPI PCIe 2.0 5GT/s - IB QDR / 10GigE
Virtualization+]

↪→

↪→

/0/100/6 bridge 5520/X58 I/O

Hub PCI Express Root Port 6↪→

/0/100/7 bridge 5520/5500/X58

I/O Hub PCI Express Root Port 7↪→

/0/100/7/0 display GK110GL

[Tesla K20Xm]↪→

/0/100/8 bridge 5520/5500/X58

I/O Hub PCI Express Root Port 8↪→

/0/100/9 bridge

7500/5520/5500/X58 I/O Hub PCI Express Root Port 9↪→

/0/100/a bridge
7500/5520/5500/X58 I/O Hub PCI Express Root Port
10

↪→

↪→

/0/100/14 generic
7500/5520/5500/X58 I/O Hub System Management
Registers

↪→

↪→

/0/100/14.1 generic
7500/5520/5500/X58 I/O Hub GPIO and Scratch Pad
Registers

↪→

↪→

/0/100/14.2 generic
7500/5520/5500/X58 I/O Hub Control Status and RAS
Registers

↪→

↪→

/0/100/1c bridge 82801JI

(ICH10 Family) PCI Express Root Port 1↪→

/0/100/1c.4 bridge 82801JI

(ICH10 Family) PCI Express Root Port 5↪→

/0/100/1c.4/0 generic Integrated
Lights-Out Standard Slave Instrumentation &
System Support

↪→

↪→

/0/100/1c.4/0.2 generic Integrated
Lights-Out Standard Management Processor Support
and Messaging

↪→

↪→

/0/100/1c.4/0.4 bus Integrated

Lights-Out Standard Virtual USB Controller↪→

/0/100/1c.4/0.4/1 usb6 bus UHCI Host

Controller↪→

/0/100/1c.4/0.4/1/1 input Virtual

Keyboard↪→

/0/100/1d bus 82801JI

(ICH10 Family) USB UHCI Controller #1↪→

/0/100/1d/1 usb2 bus UHCI Host

Controller↪→

/0/100/1d.1 bus 82801JI

(ICH10 Family) USB UHCI Controller #2↪→

/0/100/1d.1/1 usb3 bus UHCI Host

Controller↪→

/0/100/1d.2 bus 82801JI

(ICH10 Family) USB UHCI Controller #3↪→

/0/100/1d.2/1 usb4 bus UHCI Host

Controller↪→

/0/100/1d.3 bus 82801JI

(ICH10 Family) USB UHCI Controller #6↪→

/0/100/1d.3/1 usb5 bus UHCI Host

Controller↪→

/0/100/1d.7 bus 82801JI

(ICH10 Family) USB2 EHCI Controller #1↪→

/0/100/1d.7/1 usb1 bus EHCI Host

Controller↪→

/0/100/1e bridge 82801 PCI

Bridge↪→

/0/100/1e/3 display ES1000
/0/100/1f bridge 82801JIR

(ICH10R) LPC Interface Controller↪→

/0/100/1f.2 storage 82801JI

(ICH10 Family) SATA AHCI Controller↪→

/0/101 bridge Intel

Corporation↪→

/0/102 bridge Intel

Corporation↪→

/0/103 bridge Intel

Corporation↪→

/0/104 bridge Intel

Corporation↪→

/0/105 bridge

7500/5520/5500/X58 Physical Layer Port 0↪→

/0/106 bridge

7500/5520/5500 Physical Layer Port 1↪→

/0/107 bridge Intel

Corporation↪→
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/0/108 bridge Intel

Corporation↪→

/0/109 bridge Intel

Corporation↪→

/0/10a bridge Intel

Corporation↪→

/0/10b bridge Intel

Corporation↪→

/0/10c bridge Intel

Corporation↪→

/0/1 bridge 5520/5500/X58

I/O Hub PCI Express Root Port 1↪→

/0/2 bridge 5520/5500/X58

I/O Hub PCI Express Root Port 2↪→

/0/3 bridge 5520/5500/X58

I/O Hub PCI Express Root Port 3↪→

/0/3/0 display GK110GL

[Tesla K20Xm]↪→

/0/4 bridge 5520/X58 I/O

Hub PCI Express Root Port 4↪→

/0/5 bridge 5520/X58 I/O

Hub PCI Express Root Port 5↪→

/0/6 bridge 5520/X58 I/O

Hub PCI Express Root Port 6↪→

/0/7 bridge 5520/5500/X58

I/O Hub PCI Express Root Port 7↪→

/0/7/0 display GK110GL

[Tesla K20Xm]↪→

/0/8 bridge 5520/5500/X58

I/O Hub PCI Express Root Port 8↪→

/0/9 bridge

7500/5520/5500/X58 I/O Hub PCI Express Root Port 9↪→

/0/a bridge
7500/5520/5500/X58 I/O Hub PCI Express Root Port
10

↪→

↪→

/0/10d bridge Intel

Corporation↪→

/0/10d/14 generic
7500/5520/5500/X58 I/O Hub System Management
Registers

↪→

↪→

/0/10d/14.1 generic
7500/5520/5500/X58 I/O Hub GPIO and Scratch Pad
Registers

↪→

↪→

/0/10d/14.2 generic
7500/5520/5500/X58 I/O Hub Control Status and RAS
Registers

↪→

↪→

/0/10e bridge Intel

Corporation↪→

/0/10f bridge Intel

Corporation↪→

/0/110 bridge Intel

Corporation↪→

/0/111 bridge

7500/5520/5500/X58 Physical Layer Port 0↪→

/0/112 bridge

7500/5520/5500 Physical Layer Port 1↪→

/0/113 bridge Intel

Corporation↪→

/0/114 bridge Intel

Corporation↪→

/0/115 bridge Intel

Corporation↪→

/0/116 bridge Intel

Corporation↪→

/0/117 bridge Intel

Corporation↪→

/0/118 bridge Intel

Corporation↪→

/0/119 bridge Xeon 5600
Series QuickPath Architecture Generic Non-core
Registers

↪→

↪→

/0/11a bridge Xeon 5600
Series QuickPath Architecture System Address
Decoder

↪→

↪→

/0/11b bridge Xeon 5600

Series QPI Link 0↪→

/0/11c bridge Xeon 5600

Series QPI Physical 0↪→

/0/11d bridge Xeon 5600

Series Mirror Port Link 0↪→

/0/11e bridge Xeon 5600

Series Mirror Port Link 1↪→

/0/11f bridge Xeon 5600

Series QPI Link 1↪→

/0/120 bridge Xeon 5600

Series QPI Physical 1↪→

/0/121 bridge Xeon 5600

Series Integrated Memory Controller Registers↪→

/0/122 bridge Xeon 5600
Series Integrated Memory Controller Target
Address Decoder

↪→

↪→

/0/123 bridge Xeon 5600

Series Integrated Memory Controller RAS Registers↪→

/0/124 bridge Xeon 5600

Series Integrated Memory Controller Test Registers↪→

/0/125 bridge Xeon 5600
Series Integrated Memory Controller Channel 0
Control

↪→

↪→

/0/126 bridge Xeon 5600
Series Integrated Memory Controller Channel 0
Address

↪→

↪→

/0/127 bridge Xeon 5600

Series Integrated Memory Controller Channel 0 Rank↪→

/0/128 bridge Xeon 5600
Series Integrated Memory Controller Channel 0
Thermal Control

↪→

↪→

/0/129 bridge Xeon 5600
Series Integrated Memory Controller Channel 1
Control

↪→

↪→
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/0/12a bridge Xeon 5600
Series Integrated Memory Controller Channel 1
Address

↪→

↪→

/0/12b bridge Xeon 5600

Series Integrated Memory Controller Channel 1 Rank↪→

/0/12c bridge Xeon 5600
Series Integrated Memory Controller Channel 1
Thermal Control

↪→

↪→

/0/12d bridge Xeon 5600
Series Integrated Memory Controller Channel 2
Control

↪→

↪→

/0/12e bridge Xeon 5600
Series Integrated Memory Controller Channel 2
Address

↪→

↪→

/0/12f bridge Xeon 5600

Series Integrated Memory Controller Channel 2 Rank↪→

/0/130 bridge Xeon 5600
Series Integrated Memory Controller Channel 2
Thermal Control

↪→

↪→

/0/131 bridge Xeon 5600
Series QuickPath Architecture Generic Non-core
Registers

↪→

↪→

/0/132 bridge Xeon 5600
Series QuickPath Architecture System Address
Decoder

↪→

↪→

/0/133 bridge Xeon 5600

Series QPI Link 0↪→

/0/134 bridge Xeon 5600

Series QPI Physical 0↪→

/0/135 bridge Xeon 5600

Series Mirror Port Link 0↪→

/0/136 bridge Xeon 5600

Series Mirror Port Link 1↪→

/0/137 bridge Xeon 5600

Series QPI Link 1↪→

/0/138 bridge Xeon 5600

Series QPI Physical 1↪→

/0/139 bridge Xeon 5600

Series Integrated Memory Controller Registers↪→

/0/13a bridge Xeon 5600
Series Integrated Memory Controller Target
Address Decoder

↪→

↪→

/0/13b bridge Xeon 5600

Series Integrated Memory Controller RAS Registers↪→

/0/13c bridge Xeon 5600

Series Integrated Memory Controller Test Registers↪→

/0/13d bridge Xeon 5600
Series Integrated Memory Controller Channel 0
Control

↪→

↪→

/0/13e bridge Xeon 5600
Series Integrated Memory Controller Channel 0
Address

↪→

↪→

/0/13f bridge Xeon 5600

Series Integrated Memory Controller Channel 0 Rank↪→

/0/140 bridge Xeon 5600
Series Integrated Memory Controller Channel 0
Thermal Control

↪→

↪→

/0/141 bridge Xeon 5600
Series Integrated Memory Controller Channel 1
Control

↪→

↪→

/0/142 bridge Xeon 5600
Series Integrated Memory Controller Channel 1
Address

↪→

↪→

/0/143 bridge Xeon 5600

Series Integrated Memory Controller Channel 1 Rank↪→

/0/144 bridge Xeon 5600
Series Integrated Memory Controller Channel 1
Thermal Control

↪→

↪→

/0/145 bridge Xeon 5600
Series Integrated Memory Controller Channel 2
Control

↪→

↪→

/0/146 bridge Xeon 5600
Series Integrated Memory Controller Channel 2
Address

↪→

↪→

/0/147 bridge Xeon 5600

Series Integrated Memory Controller Channel 2 Rank↪→

/0/148 bridge Xeon 5600
Series Integrated Memory Controller Channel 2
Thermal Control

↪→

↪→

/0/d scsi0 storage
/0/d/0.0.0 /dev/sda disk 60GB

MK0060EAVDR↪→

/0/e scsi1 storage
/0/e/0.0.0 /dev/sdb disk 60GB

MK0060EAVDR↪→

/1 power 578322-B21
/2 power 578322-B21
/3 power 578322-B21
/4 power 578322-B21
/5 ib2 network interface
/6 ib0 network interface

ARTIFACT EVALUATION
Verification and validation studies: We verified the correctness

of the routing and modified MPI library through network simula-
tions, on a small test bed, and by checking if the used LIDs (via
ibdump) and routing tables are as expected for the final large-scale
supercomputer. For the benchmarks, we performed multiple runs,
and investigated whenever abnormalities happened during bench-
mark execution, e.g., unexpectedly long executions were checked
whether it was a persistent behavior or transient problem which
can be overcome by rebooting a node or the system.

Accuracy and precision of timings: We primarily rely on the per-
formance data provided by each application or benchmark (which
we did not implement ourself). For instances, where we injected
time measurement instructions to wrap the solver/kernel part of an
(proxy-)application, we used standard MPI_Wtime calls and verified
its correctness using a smaller test bed. The accuracy of MPI_Wtime
is sufficient for our tests, which run for multiple minutes.
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Used manufactured solutions or spectral properties: No new hard-
ware was developed. All measurement- or performance-relevant
parts of the newly wired HPC system belonged to the decommis-
sioned system. All peripheral parts which we needed to retrofit
the system, such as Ethernet cables for the management network
or BIOS batteries to replace depleted ones, are of-the-shelf compo-
nents.

Quantified the sensitivity of results to initial conditions and/or
parameters of the computational environment: We did not modify
the system (hardware or software) during the experiment, except for
rebooting crashed compute nodes or replacing faulty compute node,
and had exclusive access. Whether replacing a broken node (with
a similar spare node) altered the condition for the benchmarks
is beyond our current evaluation capabilities. We pinned down,
wherever possible, the software and hardware parameters such
that (as far as we can tell) the only difference between benchmark
executions is time and network topology (and routing/placement)
as discussed in the paper.

Controls, statistics, or other steps taken to make the measurements
and analyses robust to variability and unknowns in the system. We
had exclusive access to the entire system. MPI processes were allo-
cated by host lists for repeatability, and OpenMP threads have been
pinned to CPU cores. All executions, inputs, iterations, and the
software environment, etc., were controlled by (bash) scripts. Other
potential causes of run-to-run variability are outside our control,
and hence we executed every application and benchmark 10 times
for the exact same configuration of input, node allocation, scale
(node count), topology, and routing. Consequentially, we report
min/max/median and 1st/3rd quartiles for all application bench-
marks and the absolute/relative best performance comparison for
the pure MPI benchmarks.
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