Double-precision FPUs in High-Performance Computing: An Embarrassment of Riches?

33rd IEEE IPDPS, 21. May 2019, Rio de Janeiro, Brazil

Satoshi MATSUOKA Laboratory
Dept. of Math. and Compute Sci.
Tokyo Institute of Technology

Jens Domke, Dr.
Outline

Motivation and Initial Question

Methodology
- CPU Architectures
- Benchmarks and Execution Environment
- Information Extraction via Performance Tools

Results
- Breakdown FP32 vs. FP64 vs. Integer
- Gflop/s, ...
- Memory-Bound vs Compute-Bound

Discussion & Summary & Lessons-learned
Suggestions for Vendors and HPC Community
Motivation and Initial Question (To float … or not to float …?)

- Thanks to the (curse of) the TOP500 list, the HPC community (and vendors) are chasing higher FP64 performance, thru frequency, SIMD, more FP units, …

Motivation:
- Less FP64 units
 - Saves power
 - Free chip area (for e.g.: FP16)
 - Less divergence of “HPC-capable” CPUs from mainstream processors

Resulting Research Questions:
- Q1: How much do HPC workloads actually depend on FP64 instructions?
- Q2: How well do our HPC workloads utilize the FP64 units?
- Q3: Are our architectures well- or ill-balanced: more FP64, or FP32, Integer, memory?
- … and …
- Q4: How can we actually verify our hypothesis, that we need less FP64 and should invest $ and chip area in more/faster FP32 units and/or memory)?
Approach and Assumptions

Idea/Methodology

- Compare two similar chips; different balance in FPUs ➔ Which?
- Use ‘real’ applications running on current/next-gen. machines ➔ Which?

Assumptions

- Our HPC (mini-)apps are well-optimized
 - Appropriate compiler settings
 - Used in procurement of next gen. machines (e.g. Summit, Post-K, …)
 - Mini-apps: Legit representative of the priority applications

- We can find two chips which are similar
 - No major differences (besides FP64 units)
 - Aside from minor differences we know of (…more on next slide)

- The measurement tools/methods are reliable
 - Make sanity checks (e.g.: use HPL and HPCG as reference)

\[^{1}\text{Aaziz et al., “A Methodology for Characterizing the Correspondence Between Real and Proxy Applications”, in IEEE Cluster 2018}\]
Methodology – CPU Architectures

- Two very **similar CPUs with large difference in FP64 units**
- Intel dropped 1 DP unit for 2x SP and 4x VNNI (similar to Nvidia’s TensorCore)
- Vector Neural Network Instruction (VNNI) supports SP floating point and mixed precision integers (16-bit input/32-bit output) ops

→ **KNM: 2.6x higher SP** peak performance and **35% lower DP** peak perf.

KNL vs KNM: Port comparisons

(Figure source: https://www.servethehome.com/intel-knights-mill-for-machine-learning/)
Methodology – CPU Architectures

- Results may be subject to adjustments to reflect minor differences (red)
- Use dual-socket Intel Broadwell-EP as reference system (to avoid any “bad apples -to- bad apples” comparison); values per node:

<table>
<thead>
<tr>
<th>Feature</th>
<th>Knights Landing</th>
<th>Knights Mill</th>
<th>2x Broadwell-EP Xeon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>Intel Xeon Phi CPU 7210F</td>
<td>Intel Xeon Phi CPU 7295</td>
<td>Xeon E5-2650 v4</td>
</tr>
<tr>
<td># of Cores</td>
<td>64 (4x HT)</td>
<td>72 (4x HT)</td>
<td>24 (2x HT)</td>
</tr>
<tr>
<td>CPU Base Frequency</td>
<td>1.3 GHz</td>
<td>1.5 GHz</td>
<td>2.2 GHz</td>
</tr>
<tr>
<td>Max Turbo Frequency</td>
<td>1.5 GHz (1 or 2 cores)</td>
<td>1.6 GHz</td>
<td>2.9 GHz</td>
</tr>
<tr>
<td></td>
<td>1.4 GHz (all cores)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPU Mode</td>
<td>Quadrant mode</td>
<td>Quadrant mode</td>
<td>N/A</td>
</tr>
<tr>
<td>TDP</td>
<td>230 W</td>
<td>320 W</td>
<td>210 W</td>
</tr>
<tr>
<td>Memory Size</td>
<td>96 GiB</td>
<td>96 GiB</td>
<td>256 GiB</td>
</tr>
<tr>
<td>Triad Stream BW</td>
<td>71 GB/s</td>
<td>88 GB/s</td>
<td>122 GB/s</td>
</tr>
<tr>
<td>MCDRAM Size</td>
<td>16 GB</td>
<td>16 GB</td>
<td>N/A</td>
</tr>
<tr>
<td>Triad BW (flat mode)</td>
<td>439 GB/s</td>
<td>430 GB/s</td>
<td>N/A</td>
</tr>
<tr>
<td>MCDRAM Mode</td>
<td>Cache mode (caches DDR)</td>
<td>Cache mode</td>
<td>N/A</td>
</tr>
<tr>
<td>LLC Size</td>
<td>32 MB</td>
<td>36 MB</td>
<td>60 MB</td>
</tr>
<tr>
<td>Instruction Set Extension</td>
<td>AVX-512</td>
<td>AVX-512</td>
<td>AVX2 (256 bits)</td>
</tr>
<tr>
<td>Theor. Peak Perf. (SP)</td>
<td>5,324 Gflop/s</td>
<td>13,824 Gflop/s</td>
<td>1,382 Gflop/s</td>
</tr>
<tr>
<td>Theor. Peak Perf. (DP)</td>
<td>2,662 Gflop/s</td>
<td>1,728 Gflop/s</td>
<td>691 Gflop/s</td>
</tr>
</tbody>
</table>
Methodology – Benchmarks and Execution Environment

- **Exascale Computing Project (ECP) proxy applications** (12 apps)
 - Used in procuring CORAL machine
 - They mirror the priority applications for DOE/DOD (US)

- **RIKEN R-CCS’ Fiber mini-apps** (8 apps)
 - Used in procuring Post-K computer
 - They mirror the priority applications for RIKEN (Japan)

- **Intel’s HPL and HPCG** (and BabelStream) (3 apps)
 - Used for **sanity checks**

Other mini-app suites exist:

- PRACE (UEABS), NERSC DOE mini-apps, LLNL Co-Design ASC proxy-apps and CORAL codes, Mantevo suite, …
Methodology – Benchmarks and Execution Environment

23 mini-apps used in procurement process of next-gen machines

<table>
<thead>
<tr>
<th>ECP</th>
<th>Workload</th>
<th>Post-K</th>
<th>Workload</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMG</td>
<td>Algebraic multigrid solver for unstructured grids</td>
<td>CCS QCD</td>
<td>Linear equation solver (sparse matrix) for lattice quantum chromodynamics (QCD) problem</td>
</tr>
<tr>
<td>CANDLE</td>
<td>DL predict drug response based on molecular features of tumor cells</td>
<td>FFVC</td>
<td>Solves the 3D unsteady thermal flow of the incompressible fluid</td>
</tr>
<tr>
<td>CoMD</td>
<td>Generate atomic transition pathways between any two structures of a protein</td>
<td>NICAM</td>
<td>Benchmark of atmospheric general circulation model</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>reproducing the unsteady baroclinic oscillation</td>
</tr>
<tr>
<td>Laghos</td>
<td>Solves the Euler equation of compressible gas dynamics</td>
<td>mVMC</td>
<td>Variational Monte Carlo method applicable for a wide range of Hamiltonians for interacting fermion systems</td>
</tr>
<tr>
<td>MACSio</td>
<td>Scalable I/O Proxy Application</td>
<td>NGSA</td>
<td>Parses data generated by a next-generation genome sequencer and identifies genetic differences</td>
</tr>
<tr>
<td>miniAMR</td>
<td>Proxy app for structured adaptive mesh refinement (3D stencil) kernels used by many scientific codes</td>
<td>MODYLAS</td>
<td>Molecular dynamics framework adopting the fast multipole method (FMM) for electrostatic interactions</td>
</tr>
<tr>
<td>miniFE</td>
<td>Proxy for unstructured implicit finite element or finite volume applications</td>
<td>NTChem</td>
<td>Kernel for molecular electronic structure calculation of standard quantum chemistry approaches</td>
</tr>
<tr>
<td>miniTRI</td>
<td>Proxy for dense subgraph detection, characterizing graphs, and improving community detection</td>
<td>FFB</td>
<td>Unsteady incompressible Navier-Stokes solver by finite element method for thermal flow simulations</td>
</tr>
<tr>
<td>Nekbone</td>
<td>High order, incompressible Navier-Stokes solver based on spectral element method</td>
<td>Bench</td>
<td>Workload</td>
</tr>
<tr>
<td>SW4lite</td>
<td>Kernels for 3D seismic modeling in 4th order accuracy</td>
<td>HPL</td>
<td>Solves dense system of linear equations $Ax = b$</td>
</tr>
<tr>
<td>SWFFT</td>
<td>Fast Fourier transforms (FFT) used in by Hardware Accelerated Cosmology Code (HACC)</td>
<td>HPCG</td>
<td>Conjugate gradient method on sparse matrix</td>
</tr>
<tr>
<td>XSBench</td>
<td>Kernel of the Monte Carlo neutronics app: OpenMC</td>
<td>Stream</td>
<td>Throughput measurements of memory subsystem</td>
</tr>
</tbody>
</table>
Methodology – Benchmarks and Execution Environment

- OS: clean install of **centos 7**
- Kernel: 3.10.0-862.9.1.el7.x86_64 (**w/ enabled meltdown / spectre patches**)
- Identical SSD for all 3 nodes
- Similar DDR4 (with 2400 MHz; different vendors)
- No parallel FS (lustre/NFS/…) ➔ low OS noise
- Boot with `intel_pstate=off` for better CPU frequency control
- **Fixed CPU core/[uncore] freq.** to max: 2.2/[2.7] BDW, 1.3 KNL, 1.5 KNM

- Compiler: **Intel Parallel Studio XE** (2018; update 3) with default flags for each benchmark plus additional: `--ipo -xHost`
 (exceptions: AMG w/ xCORE-AVX2 and NGSA bwa with gcc)
 and Intel’s Tensorflow with MKL-DNN (for CANDLE)
Step 1: Check benchmark settings for **strong-scaling** runs (none for MiniAMR) (important for fair comparison!)

Step 2: **Identify kernel/solver** section of the code wrap with additional instructions for timing, SDE, PCM, VTune, etc.

Step 3: **Find “optimal”** #MPI + #OMP configuration for each benchmark (try under-/over-subscr.; each 3x runs; “best” based on time or Gflop/s)

Step 4: **Run 10x “best”** configuration w/o additional tool

Step 5: Exec. proxy-app **once with each performance tool**
Early observation

- Relatively high runtime in initializing / post-processing within proxy-apps
 - E.g. HPCG only 11% – 30% in solver (dep. on system)
- Measuring complete application yields misleading results

→ Need to wrap kernel and on/off instructions for tools:

```c
#define START_ASSAY {measure time; toggle on [PCM | SDE | VTune]}
#define STOP_ASSAY  {measure time; toggle off [PCM | SDE | VTune]}

Function main is
  STOP_ASSAY
  Initialize benchmark
  foreach solver loop do
    START_ASSAY
    Call benchmark solver/kernel
    STOP_ASSAY
    Post-processing
  end
  Verify benchmark result
  START_ASSAY
```

PseudoCode 1: Injecting analysis instructions
Performance analysis tools we used (on the solver part):

- **GNU perf** (perf. counters, cache accesses, …)
- **Intel SDE** (wraps Intel PIN; simulator to count each executed instruction)
- **Intel PCM** (measure memory [GB/s], power, cache misses, …)
- **Intel Vtune** (HPC/memory mode: FPU, ALU util, memory boundedness, …)
- **Valgrind, heaptrack** (memory utilization)
- (tried many more tools/approaches with less success 😞)

<table>
<thead>
<tr>
<th>Raw Metric</th>
<th>Method/Tool</th>
</tr>
</thead>
<tbody>
<tr>
<td>Runtime [s]</td>
<td>MPI_Wtime()</td>
</tr>
<tr>
<td>#{FP / integer operations}</td>
<td>Software Development Emulator</td>
</tr>
<tr>
<td>#{Branches operations}</td>
<td>SDE</td>
</tr>
<tr>
<td>Memory throughput [B/s]</td>
<td>PCM (pcm-memory.x)</td>
</tr>
<tr>
<td>#{L2/LLC cache hits/misses}</td>
<td>PCM (pcm.x)</td>
</tr>
<tr>
<td>Consumed Power [Watt]</td>
<td>PCM (pcm-power.x)</td>
</tr>
<tr>
<td>SIMD instructions per cycle</td>
<td>perf + VTune (‘hpc-performance’)</td>
</tr>
<tr>
<td>Memory/Back-end boundedness</td>
<td>perf + VTune (‘memory-access’)</td>
</tr>
</tbody>
</table>
Methodology – Problems on the Way

Many times we were stuck (a few examples below)

- VTune crashing machines (w/ Intel’s sampling driver 😞 ➞ use `perf`)
 - Worked on older kernels (pre Spectre and Meltdown patch)
- Changing core frequency leads to change in uncore frequency
 - Use LikWid to fix uncore frequency
 - LikWid itself requires changing a kernel parameter (intel_pstate=off)
- Many applications crashed for different reason
 - E.g.: AMG’s iteration count is inconsistent with AVX512 optimization; NGSA only compiled w/ GNU gcc; we fixed MACSio’s segfaults for Intel compiler
- Several apps have different input datasets
 - “Right” choice tricky (but req. for strong-scaling sweep of threads/processes)
 - Some enforce the #thread/#proc based on domain decomposition scheme
- Measuring performance metric for solver phase in apps
 - For some (like CANDLE written in Python) not straightforward
Results

What are we looking for?
- Breakdown of applications requirements/characteristics
- **Performance metrics**
- **Memory-bound vs. compute-bound**
- Power profile

If we measure the things on top, we can get:
- Indications of **impact of # FPUs** on performance (and power)
- Understanding what are the **real requirements of HPC** applications
 - Data-centric?
- Indications of what can be optimized on current hardware
 - Manipulate frequency? (⇒ similar to **READEX**)?
- Indications of how supercomputers, as a utility is impacted
Results – Breakdown %FP32 vs. %FP64 vs. %Integer

Following: few examples of >25 metrics (many more in raw data)

- Integer (+DP) heavy (>50%; 16 of 22), only 4 w/ FP32, only 1 mixed precision
Results – Compare Time-to-Solution in Solver

- Only 3 apps seem to suffer from missing DP (MiniTri: no FP; FFVC: only int+FP32)
- VNNI may help with CANDLE perf. on KNM; NTChem improvement unclear
- KNL overall better (due to 100MHz freq. incr.?)
- Memory throughput on Phi (in cache mode) doesn’t reach peak of flat mode (only ~86% on KNL; ~75% on KNL)

Note: MiniAMR not strong-scaling ➔ limited comparability

Jens Domke
Results – Compare Gflop/s in Comp. Kernel/Solver

- 8 apps out of 18: less Gflop/s on Phi than on BDW (ignoring I/O & Int-based apps)
- All apps (ignoring HPL) with low FP efficiency:
 - ≤ 21.5% on BDW, ≤ 10.5% on KNL, ≤ 15.1% on KNM (Why? ➔ next slides)
- Phi performance comes from higher peak flop/s, lop/s and/or faster MCDRAM?

Relative perf. over BDW baseline

Absolute Gflop/s perf. compared to theor. peak

20% of theor. peak
Results – Memory-/Backend-bound (VTune)

- Surprisingly high (~80% for Phi) ➞ “unclear” how VTune calculates these %
 (Memory-bound ≠ backend-bound ➞ no direct comparison BDW vs Phi)
Results – Frequency Scaling for Memory-Boundedness

Alternative idea:
- Theory: Higher CPU freq
 ➞ faster compute?
 ➞ compute-bound?
- 20 of 22 of apps below ideal scaling on BDW
 ➞ not compute-bound
 ➞ memory-bound?
- HPCG on Phi (vs. BDW):
 - no improve. w/ freq.
 - ≈2x mem. throughput
 - runtime ≈10% lower
 ➞ memory-latency bound (so, MCDRAM is bigger bottleneck)
 (➞ one of Dongarra’s original design goals)
- BDW: TurboBoost (TB)
 mostly useless for apps

Fig. 6. Speedup obtained through increased CPU frequency (w.r.t baseline frequency of 1.0 Ghz on KNL/KNM and 1.2 Ghz on BDW); Top plot: KNL, middle plot: KNL, bottom plot: BDW; Theoretical peak (ThPeak): furthest
Supports our previous hypothesis that most of the proxy-/mini-apps are memory-bound

Outlier: only Laghos seems (intentionally?) poorly optimized

Verifies our assumption about optimization status of the apps (similar to other HPC roofline plots)

KNL/KNM roofline plots show nearly same results (omitted to avoid visual clutter)

Fig. 5. Roofline plot (w.r.t dominant FP operations and DRAM bandwidth) for Broadwell-EP reference system; Filtered proxy-apps with negligible FP operations: MxIO, MTri, and NGSA; Proxy-app labels acc. to Section II-B
Results – Requirement for a “Weighted Look” at Results

- Studied HPC utilization reports of 8 centers across 5 countries
- **Not every app equally important** (most HPC cycles dominated by Eng. (Mech./CFD), Physics, Material Sci., QCD)

- Some supercomputers are “specialized”
 - **Dedicated HPC** (e.g.: weather forecast)
- For system X running **memory-bound** apps
 - Why pay premium for FLOPS?
 - NASA applies this pragmatic approach

Jens Domke
Discussion on Floating-Point in HPC

- FLOPS: de-facto performance metric in HPC 😞
 - Procurement (proxy) apps highly FP64 dependent, but often memory-bound?
 - Even for memory-bound apps (HPCG): Performance reported in FLOPS!!
 ➔ Community move to less FLOP-centric performance metrics?

Options for memory-bound applications:
- Invest in memory-/data-centric architectures (and programming models)
- Reduction of FP64 units acceptable ➔ reuse chip area
- Move to FP32 or mixed precision ➔ less memory pressure

Options for compute-bound applications:
- Brace for less FP64 units (driven by market forces) and less “free” performance (10nm, 7nm, 3nm, …then?)
- FP32 underutilized ➔ Research use of mixed/low precision without losing required accuracy
 ➔ Remove and design FP64-only architectures
- Libraries will pragmatically try to utilize lower precision FPUs
 • E.g.: use GPU FP16 TensorCores in GEMM (Dongarra’s paper at SC18)
 ➔ If no library ➔ Take performance hit / rewrite code to use low precision units

Not much improvement
Research focus can help many applications

Not much improvement
Research focus can help many applications

Jens Domke
Lessons-learned:

- IOP counting method may be misleading (→ instructions instead of ops?)
- **Fixing uncore** frequency is important
- Defining/measuring memory boundedness is hard 😞
- Intel MPI good on all Intel chips (i.e., default settings, rank/thread mapping)
- Intel’s performance **tools need some improvements** (others: A LOT)
 - SDE: CANDLE; VTune+sample driver: nodes crash; Heaptrack: NGSA, …

Suggestions:

- Improved proxy-apps and better documentation (and more diversity?)
 - Avoid bugs, e.g. MACSio+icc, NGSA+icc, and AMG + AVX512
 - Easy choice of inputs for adapting runtime and strong- vs. weak-scaling
- Community effort into **one repo of HPC BMs** (similar to SPEC)?
Acknowledgements and Repo

Much more data/details in the full paper:

Double-precision FPUs in High-Performance Computing: An Embarrassment of Riches?

Complete measurement **framework and all raw data** available:

https://gitlab.com/domke/PAstudy

The work was made possible by the dedicated efforts of these students

Kazuaki Matsumura and **Haoyu Zhang**

Keita Yashima and **Toshiki Tsuchikawa** and **Yohei Tsuji**

(w/ add. input: Hamid R. Zohouri and Ryan Barton)

of the MATSUOKA Lab, Department of Mathematical and Computer Science, Tokyo Tech and their supervisors:

Prof. Satoshi Matsuoka, Artur Podobas, and Mohamed Wahib (+ myself).

This work was supported by MEXT, JST special appointed survey 30593/2018, JST-CREST Grant Number JPMJCR1303, JSPS KAKENHI Grant Number JP16F16764, the New Energy and Industrial Technology Development Organization (NEDO), and the AIST/TokyoTech Real-world Big-Data Computation Open Innovation Laboratory (RWBC-OIL).
Postdoctoral Researcher
High Performance Big Data Research Team,
RIKEN Center for Computational Science,
Kobe, Japan

Tokyo Tech Research Fellow
Satoshi MATSUOKA Laboratory,
Tokyo Institute of Technology,
Tokyo, Japan

http://domke.gitlab.io/
jens.domke@riken.jp