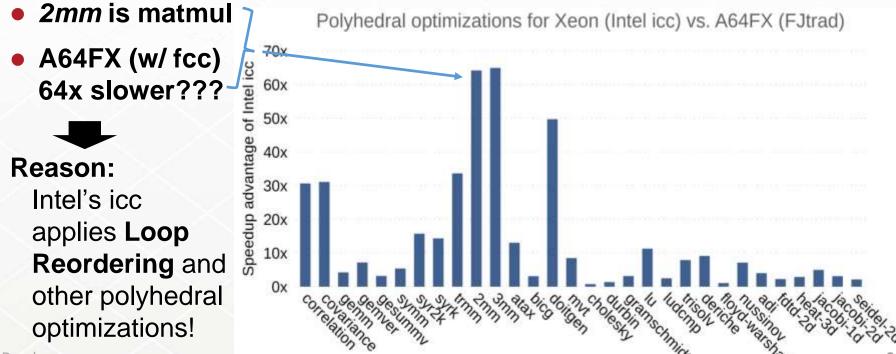
Compiler A64FX – Your Path You Must Decide!

Jens Domke, Dr. rer. nat. < jens.domke@riken.jp > High Performance Big Data Research Team, RIKEN R-CCS, Kobe, Japan

Outline

Motivation for this Study

- Measurement Methodology
 - Compiler Selection
 - HPC Workloads


Discussion of Fugaku's Results

• Summary, Conclusion, Future Work

Unexpected advantage of Xeon vs. A64FX?

- Comparing PolyBench (s. later) against Intel Xeon E5-2650v4
- Xeon core w/ less than 1/2 of a A64FX core's theoretical peak

Jens Domke

Other Reports and Research Questions

- **Performance portability** ($x86 \rightarrow A64FX$) not easy to achieve
 - Fujitsu compilers and 4 MPI + 12 OMP threads not always best?
 - A. Poenaru, "An Evaluation of the Fujitsu A64FX for HPC Applications," Presentation in AHUG WS ISC 21; and
 - B. Michalowicz et al., "Comparing the behavior of OpenMP Implementations with various Applications on two different Fujitsu A64FX platforms," in PEARC '21, 2021; and
 - E3SM Pathfinding on Fugaku: <u>https://e3sm.org/e3sm-pathfinding-on-fugaku/;</u> etc... → GNU better than FJ's compiler
- Research Question:
 - Q1: Is recommended usage model, i.e., compiler+flags and MPI/OMP config, ideal or just a starting point?
 - **Q2:** Is there a "silver bullet" compiler choice for A64FX?
 - Q3: Can performance differences, compared to similar x86based hardware, be attributed to the compiler?

Compilers for our Measurements

Simple Idea: Throw many science codes at compilers and look for trends!

Three compilers and five variations:

- **FUJITSU** Software Technical Computing Suite (v4.5.0):
 - *FJtrad* (traditional mode) and *FJclang* (based on LLVM 7)
 - -Kfast,ocl,largepage,lto additionally to benchmark's individual flags
- LLVM Compiler Infrastructure (v12):
 - native (-Ofast -ffast-math -flto=thin) and polly; with Fujitsu's frtr for Fortran
- **GNU** Compiler Collection (v10.2.0):
 - -03 -march=native -flto additionally to benchmark's individual flags

Alternatives: Arm and HPE/Cray unavailable on Fugaku at time of writing
 Jens Domke

Testing >100 Kernels and HPC Workloads

- RIKEN's FS2020 TAPP-kernels (micro kernels)
 - 22 kernels from RIKEN's Priority Issue Target Applications
 - OMP-para. kernels of FFB, GENESIS, NICAM, QCD, etc.; Target: 1 CMG
- Polyhedral Benchmark suite (in short, **PolyBench**)
 - 30 single-threaded, simple scientific kernels written in C
 - Input sizes [*Mini→ExtraLarge*] to target diff. memory levels (we use *Large*)
- TOP500 benchmarks: HPL and HPCG (default version)
 - Used by community for world-wide supercomputer ranking
- Additionally: BabelStream and Dlproxy (GEMM-based convolution)

Testing >100 Kernels and HPC Workloads

- Exascale Computing Project (ECP) Proxy Applications
 - Used for procurement of exascale systems by HPC centers in USA
 - Version 1.0 contains 12 workloads (we excluded CANDLE)
- RIKEN CCS' Fiber Miniapp Suite
 - 8 proxy apps used in procurement of Fugaku (we excluded NGSA)
 - Represent the priority areas of the Japanese government
- SPEC Benchmarks (CPU 2017[speed] V1.1 & OMP 2012 V1.1)
 - Widely accepted benchmark set for industry and HPC vendors (use train)
 - Single-threaded: CPU[speed] Integer
 - OMP-parallelized: CPU[speed] Floating Point and SPEC OMP

Jens Domke

Overview of our 55 traditional HPC Workloads

Set	Name	Sci. / Eng. / AI Domain	Name	Sci. / Eng. / AI Domain	Name	Sci. / Eng. / AI Domain
TOP500	HPL	Math/Computer Science	HPCG	Math/Computer Science	ĺ.	1
ECP	AMG	Physics and Bioscience	miniAMR	Geoscience/Earthscience	SW4lite	Geoscience/Earthscience
	CoMD	Material Science/Engineering	miniFE	Physics	SWFFT	Physics
	Laghos	Physics	miniTRI	Math/Computer Science	XSBench	Physics
	MACSio	Math/Computer Science	Nekbone	Engineering (Mechanics, CFD)		
RIKEN	FFB	Engineering (Mechanics, CFD)	mVMC	Physics	NTChem	Chemistry
	FFVC	Engineering (Mechanics, CFD)	NOSA	Bioscience	QCD	Lattice QCD
	MODYLAS	Physics and Chemistry	NICAM	Geoscience/Earthscience		
	blender(R)	Math/Computer Science	exchange2	Artificial Intelligence	omnetpp	Math/Computer Science
	cam4(R)	Geoscience/Earthspience	fotonik3d	Physics	perlbench	Math/Computer Science
	namd(R)	Manufactorience/Engineering	gcc	Math/Computer Science	pop2	Geoscience/Earthscience
SPEC CDU	parest(R)	Bioscience	imagick	Math/Computer Science	wrf	Geoscience/Earthscience
SPEC CPU	povray(R)	Math/Computer Science	lbm	Engineering (Mechanics, CFD)	roms	Geoscience/Earthscience
	bwaves	Physics	leela	Artificial Intelligence	x264	Math/Computer Science
	cactuBSSN	Physics	mcf	Math/Computer Science	xalancbmk	Math/Computer Science
	deepsjeng	Artificial Intelligence	nab	Material Science/Engineering	XZ	Math/Computer Science
SPEC OMP	applu331	Engineering (Mechanics, CFD)	fma3d	Physics	mgrid331	Engineering (Mechanics, CFD)
	botsalgn	Bioscience	ilbdc	Engineering (Mechanics, CFD)	nab	Chemistry
	botsspar	Math/Computer Science	imagick	Math/Computer Science	smithwa	Bioscience
	bt331	Engineering (Mechanics, CFD)	kdtree	Math/Computer Science	swim	Geoscience/Earthscience
	bwaves	Engineering (Mechanics, CFD)	md	Material Science/Engineering		

Measurement Methodology and Environment

- 2-stage approach for each BM/compiler combination
 - Check benchmark for strong-scaling runs (☺ none for MiniAMR/XSBench)
 (→ important for fair comparison!)
 - Identify kernel/solver section → wrap with additional instructions for timing
 - Find "optimal" #MPI + #OMP configuration for each benchmark+compiler (try under-/over-subscr.; each 3x runs; "best" based on time, or Gflop/s, etc.)
 - Run 10x of "best" configuration for lowest time-to-solution metric
- Single-node experiments on Fugaku
 - **Disabled power-saving** features, but **otherwise default env** variables (exc. SPEC: XOS_MMM_L_PAGING_POLICY=demand:demand:demand XOS_MMM_L_ARENA_LOCK_TYPE=0)
 - Rank & thread placement (spread & close, resp.) controlled by Fujitsu MPI

Benchmark files cached to first-layer storage (SSD shared by 16 nodes)

Results for FS2020 Micro Kernels

- Gain $\Delta = \frac{T_{FJtrad}}{T_x} 1$ colored in range [-1, +1]; Bold name: $\geq 2x$ speed-up
- Prog.lang in [] after name; Run config. [#MPI | #OMP] in headline or in cells
- Dark pink: unsolvable compiler/runtime error
- Fitrad w/ mostly **better** results
- GNU beats Fitrad in 4 tests but also runtime errors (6x)

Using always "best" compiler → 17% avg. runtime reduction

Jens Domke

Time-to-Solution [in s] (FJtrad) and Relative Performance Gain (others)

	runtime		Micro Kernels (all with [1 12])					
Kernel 1 [C]	0.001	-0.594	-0.961	-0.961	-0.964			
Kernel 2 [C]	0.002	-0.580	-0.985	-0.985	-0.879			
Kernel 3 [F]	0.010	-0,196	-0.194	-0.196	-0.958			
Kernel 4 [F]	0.002	-0.015	-0.019	-0.016	-0.797			
Kernel 5 [F]	0.001	-0,406	-0.407	-0.406	-0.668			
Kernel 6 [F]	0.003	0.003	0.005	0.005	-0.506			
Kernel 7 [F]	0.001	-0.028	0.002	-0.003	-0.634			
Kernel 8 [F]	0.009	0.056	0.059	0.076	1.270			
Kernel 9 [F]	0.009	-0.003	-0.002	0.011	0.798			
Kernel 10 [F]	0.001	-0.027	-0.016	-0.022	-0.833			
Kernel 11 [F]	0.009	-0.005	-0.008	-0.005	1.350			
(ernel 12 [F]	0.001	-0.043	-0.059	-0.035	-0.688			
(ernel 13 [F]	0.009	0.007	-0.005	-0.008	run error			
Kernel 14 [F]	0.009	0.000	-0.007	-0.004	run error			
(ernel 15 [F]	0.008	0.004	-0.001	0.005	run error			
ernel 16 [C]	0.001	-0.066	-0.634	-0.638	-0.581			
Kernel 17 [F]	0.001	-0.044	-0.034	-0.041	run error			
(ernel 18 (F)	0.001	0.127	0.120	0.129	run error			
Kernel 19 [F]	0.009	0.009	0.012	0.010	run error			
(ernel 20 [F]	0.009	-0.007	-0.007	-0.008	-0.416			
Cernel 21 [C]	0.001	-0.682	-0.618	-0.637	-0.571			
(ernel 22 [C]	0.004	compile error	compile error	compile error	0.269			
	FJtrad	FJclang	LLVM	LLVM+Polly	GNU			
			Compiler Variant	1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 -				
4	- abs>	\leftarrow	compiler vendin	relative	→ →	1		
				ICIUITE				

Results for PolyBench

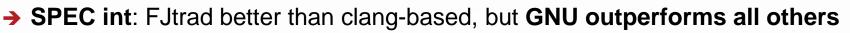
ge	runtime		Poly	Bench (all with [1]1])	
correlation [C]	10.743	1.152	0.965	208.559	0.987
covariance [C]	10.735	1.150	0.984	300.513	0.990
gemm [C]	1.629	2.857	0.389	0.606	0.991
gemver [C]	0.092	19.289	1.169	7.152	1.408
gesummv [C]	0.025	0.008	0.004	4:658	-0.020
symm [C]	12.491	0.913	-0.062	1,931	-0.053
syr2k [C]	6.424	0.556	0.315	0.576	0.378
syrk [C]	3.011	0.490	0.169	0.231	0.377
trmm [C]	6.267	0.906	1.065	2711.882	0.977
2mm [C]	18.272	2.800	0.936	15.296	1.264
3mm [C]	30.365	2.856	0.966	17.264	1.197
n atax [C]	0.047	13.141	1.480	2.847	1.498
bicg [C]	0.057	-0.073	-0.071	2.046	0.020
doitgen [C]	5.819	12.307	1.499	1303.331	1.587
mvt [C]	0.085	25.995	1.163	250130.507	1.485
cholesky [C]	0.878	-0.862	-0.854	-0.192	-0.852
durbin [C]	0.001	-0.544	-0.579	-0.577	-0.781
gramschmidt [C]	12.863	0.024	0.077	0.522	0.383
lu [C]	28.580	1.246	1.389	26.973	1.345
ludcmp [C]	7.142	-0.025	-0.292	-0.534	-0.375
trisolv [C]	0.022	1.387	1.437	1,819	1.450
deriche [C]	0.753	-0.096	-0.014	-0.145	-0.043
+ floyd-warshall [C]	0.364	1.515	1.537	-0.741	1.209
nussinov [C]	22.950	0.941	1.511	1.726	0.896
adi [C]	48.401	0.572	0.078	0.935	0.057
fdtd-2d [C]	3.393	3.578	0.818	-0.300	0.669
heat-3d [C]	8.549	3.806	1.122	-0.421	0.362
jacobi-1d [C]	0.004	4.173	1.648	-0.541	1.132
jacobi-2d [C]	5.163	2.750	1.188	-0.486	0.543
seidel-2d [C]	54.664	1.732	1.683	1.570	0.476
	FJtrad	FJclang	LLVM	LLVM+Polly	GNU
			Compiler Variant	5	

Time-to-Solution [in s] (FJtrad) and Relative Performance Gain (others)

• PolyBench with Large input (≈25MB men

- LLVM+Polly: bes results (followed b FJclang)
- → FJtrad worst opti exc. in 4 cases
- → Highlights:
 - → Over **250.000x** speedup for m
 - Median speed of 3.8x by using "best" compiler

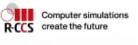
Jens Domke


Results for x500, Babel, ECP, Fiber

- → Surprising ≈5% gain for HPL (LLVM or FJclang) despite main time in SSL2
- Same for DLproxy (matmul convolution; SSL2) but even higher gain w/ GNU
- Time-to-Solution [in s] (FJtrad) and Relative Performance Gain (others) GNU: 51% runtime runtime Ranking HPL [C] [48]1] 0.043 [48]1] 0.046 [48]1] -0.023 [48]1 21.506 [48]1] 0.001 reduction in stream HPCG [C++] [48]1] 0.528 0.031 [48]1] -0.116 [48]1] -0.191 [48]1] -0.518 [48]1] Babel [C++] 1.676 [1|36]-0.004[1|36]0.377 [1]24] 0.296 [1]24] 0.512 $(\rightarrow eq. to higher GB/s)$ DLproxy [C] 0.048 [1|48] -0.071 [1]48] 0.016 [1]48] 0.019 [1]48] 0.155 [1]48] ECP proxy apps AMG [C] 5.042 [4|12] 0.058 [8]6] 0.206 [32]1] -0.304 [32]1] -0.524[4]12] → For ECP apps use CoMD [C] 4.460 [48]1] 0.124 [48]1] 0.122 [48]1] 0.132 [48]1] 0.086 [48]1] Laghos 45.436 [48]1 0.586 [48]1] 0.611 [4811] 0.399[48]1] run error MACSio [C,C++] [48]1] 0.184 [48]1] LLVM or GNU and 24.343 -0.067 [48]1] 0.172 [48]1] 0.043 [48]1] miniAMR [C] 18.857 [48]1] -0.045 [48]1] 0.016 [48]1] 0.024 [48]1] 0.113 [48]1] miniFE [C++] 0.373 [4]12] [4]12] -0.459 [4]12] -0.097 -0.374 [4]12] 0.718 [4]12] for Fiber apps use miniTRI [C++] [32]1 3.607 11481 3 5 3 9 148 1148 29.182 0.217 [32]1] Nekbone [F] 1.656 [48]1] 0.027 [48]1] 0.026 [48]1] -0.304 [48]1] run error. Fujitsu's compiler SW4lite [F,C++] [48]1] 0.011 [48]1] -0.022 [48]1] 0.003 [48]1] 0.853 -0.4844811 0.035 [32]1] [32]1] 0.045 [32]1] 0.063 [32]1] SWFFT (F,C) 1.194 [32]1] 0.055 XSBench [C] 1.649 [1|48] 0.323 [1]48] 0.754 [1]48 5.865 -0.029[1|48]**RIKEN** miniapps → Avg. speedup: 1.65x FFB [F,C,C++] [4]1] 29.877 compile error complie error 2.457 le error FFVC [C++,F] [1]36] -0.026 [1]36] -0.260 [48]1] -0.254 [48]1] [48]1] 11.558 -0.926 (median 1.09x) with MODYLAS [F] 29.262 [16]3] 0.001 [16|3] -0.134 [16]3] -0.139 [16]3] 11613 -0.768 mVMC [C.F] [24]2] [24]2] -0.081 [48]1] [48]1] [48]1] 15.026 -0.0020.173 -0.334 max. 6.7x in XSBench NICAM [F] [10]4] [10]4] -0.001 [10]4] [10]4] 7.645 -0.0030.014 -0.768[10]4] NTChem (F) [12]4] 0.061 [12]4] 0.061 [12|4] 9.440 [12]4] -0.0010.418 [24]1] OCD [F] 8.048 [24]2] 0.002 [24]2] 0.003 [24]2] 0.003 [24]2] 0.036 [24]2] -1.0 \rightarrow [4 | 12] rarely best option FJtrad FJclang LLVM LLVM+Polly GNU Compiler Variant Jens Domke

Results for SPEC CPU

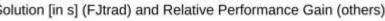
Jens Domke


→ Likely result of GNU's prevalence in embedded space and Arm's continued investments into GNU compilers (see: <u>https://community.arm.com/developer/tools-software-ides-blog/posts/gcc-10-better-and-faster</u>)

SPEC float: GNU is SPEC CPU int (all with [1|1]) runtime perlbench (C) 95.842 -0.497-0.458-0.4590.249 worst option and -0.662 -0.660 0.237 gcc [C] 144.654 -0.656mcf [C] 107.932 -0.546-0.554-0.555 0.266 most are dominantly omnetpp [C++] 153.212 0.127 0.038 0.021 0.025 xalancbmk [C++] 227.200 0.856 0.860 1.054 0.852 -0.844 xs [C] 66.105 -0.840-0.8440.145 written in Fortran deepsjeng [C++] -1.000 174,909 0.292 0.225 0.338 0.286 leela [C++] 225.918 0.293 0.255 0.388 (→ no real benefit exchanges [F] 0.778 137.069 0.000 -0.010-0.00977.578 -0.638-0.656-0.647 0.036 XZ [C] from LLVM12 SPEC CPU float 1.690 [1|32] -0.004 [1|32] -0.009 [1|32] -0.011 [1|32] bwaves [F] -0.774 [1]32 cactuBSSN [C++,C,F] -0.426 [1|36] except LTO?) 4.956 [1]48] 0.249 [1]48] [1]48] 0.011 [1|48] -0.031 Ibm [C] 11.397 [1]48] 0.109 [1]48] -0.118 [1|48] -0.123 [1|48] [1]48] -0.446 wrf [F,C] 0.002 [1|32] [1|32] [1|32] 5.482 [1]32] 0.007 0.002 -0.864 cams [F,C] 11.925 [1]48] 0.006 [1|48] 0.012 [1|48] 0.007 [1|48] -0.322 [1|32] → "Real" flang (not F18) pops [F,C] [1]32] 0.004 [1|32] 0.002 [1|32] 0.001 [1|32] 15.115imagick [C] 18.778 [1|8] 5.651 [1|8] 2.114 [1]8] 1,265 [1|8] 1.423 [1|8] (eg. https://github.com/flangnab [C] [1|48] 0.207 [1|48] 0.082 [1|48] 0.155 [1|48] [1]48] 17.824 -0.013 fotonik [F] 8.893 [1]48] 0.002 [1|48] 0.001 [1|32] -0.004 [1|32] -0.521 [1|32] compiler/flang) might roms (F 8.134 [1]48] -0.013 [1]48] -0.004 [1]48] -0.003 [1|48] -0.779 [1]48] GNU FJtrad FJclang LLVM LLVM+Polly improve situation Compiler Variant

Time-to-Solution [in s] (FJtrad) and Relative Performance Gain (others)

+1.0



Results for SPEC OMP

- → Similar to SPEC CPU float: **GNU is worst** exc. for kdtree (16.5x speedup)
- → Average time-to-solution improvement of 49% in SPEC CPU and 2.5x **speedup in SPEC OMP** with "best" compiler (over FJtrad)
- Median improvement across both SPEC suites is 14%
- → Many of SPEC benchmarks don't scale to 48 cores (eg. full A64FX) (biggest "offender" Time-to-Solution [in s] (FJtrad) and Relative Performance Gain (others) is SPEC CPU's

imagick with sweetspot at only 8 OMP threads)

SPEC OMP				
109.786 [1 48]	-0.008 [1]48]	-0.008 [1]48]	-0.008 [1]48]	-0.870 [1]48]
0.541 [1 48]	-0.045 [1 48]	-0.045 [1 48]	-0.056 [1 48]	-0.824 [1 32]
25.995 [1 48]	0.185 [1 48]	-0.011 [1]48]	0.055 [1 48]	-0.150 [1 36]
18.427 [1 48]	-0.002 [1 48]	-0.001 [1 48]	-0.001 [1 48]	0.168 [1 36]
0.686 [1 48]	-0.043 [1]48]	0.009 [1 48]	0.007 [1 48]	-0.223 [1 48]
0.492 [1 48]	0.926 [1]16]	1.244 [1]32]	2.134 [1]32]	0.525 [1]12]
15.715 [1 48]	-0.001 [1 48]	-0.001 [1 48]	-0.002 [1 48]	-0.972 [1 48]
11.982 [1 48]	-0.008 [1 48]	0.016 [1]48]	0.011 [1]48]	-0.091 [1 36]
1.367 [1 32]	-0.015 [1 32]	-0.016 [1 32]	-0.015 [1 32]	-0.559 [1 24]
4.573 [1]48]	0.911 [1]48]	-0.253 [1]48]	-0.379 [1]48]	-0.232 [1 48]
0.220 [1 32]	-0.102 [1 32]	-0.108 [1 32]	-0.105 [1 32]	-0.308 [1 32]
3.196 [1 32]	-0.008 [1 32]	-0.012 [1 32]	-0.010 [1 32]	0.055 [1 32]
3.082 [1 48]	2.361 [1 48]	1.367 [1]48]	1.417 [1]48]	invalid output
166.330 [1 48]	10.355 [1]48]	10.691 [1]48]	10.704 [1]48]	15.470 [1]48
FJtrad	FJclang	LLVM	LLVM+Polly	GNU
		Compiler Variant	1000 - 2000 1000 100 100 20 0 000	
	25.995 [1]48] 18.427 [1]48] 0.686 [1]48] 0.492 [1]48] 15.715 [1]48] 11.982 [1]48] 1.367 [1]32] 4.573 [1]48] 0.220 [1]32] 3.196 [1]32] 3.082 [1]48] 166.330 [1]48]	109.786 [1 48] -0.008 [1 48] 0.541 [1 48] -0.045 [1 48] 25.995 [1 48] 0.185 [1 48] 18.427 [1 48] -0.002 [1 48] 0.686 [1 48] -0.043 [1 48] 0.492 [1 48] -0.043 [1 48] 15.715 [1 48] -0.001 [1 48] 1.982 [1 48] -0.008 [1 48] 1.367 [1 32] -0.015 [1 32] 4.573 [1 48] 0.911 [1 48] 0.220 [1 32] -0.102 [1 32] 3.196 [1 32] -0.008 [1 32] 3.082 [1 48] 2.361 [1 48] 166.330 [1 48] 10.355 [1 48]	109.786 [1 48] -0.008 [1 48] -0.008 [1 48] 0.541 [1 48] -0.045 [1 48] -0.045 [1 48] 25.995 [1 48] 0.185 [1 48] -0.011 [1 48] 25.995 [1 48] 0.185 [1 48] -0.011 [1 48] 18.427 [1 48] -0.002 [1 48] -0.001 [1 48] 0.686 [1 48] -0.002 [1 48] -0.001 [1 48] 0.492 [1 48] -0.043 [1 48] -0.009 [1 48] 0.492 [1 48] -0.001 [1 48] -0.001 [1 48] 11.982 [1 48] -0.008 [1 48] -0.001 [1 48] 11.982 [1 48] -0.008 [1 48] -0.016 [1 32] 4.573 [1 48] 0.911 [1 48] -0.253 [1 48] 0.220 [1 32] -0.102 [1 32] -0.108 [1 32] 3.196 [1 32] -0.008 [1 32] -0.012 [1 32] 3.082 [1 48] 2.361 <	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

-1.0

Summary & Conclusion

- Across all 108 benchmarks and realistic workloads: <u>median</u> runtime improvement of 16% is possible (simply by selecting right compiler)
- **Performance discrepancy for PolyBench solved** by switching from the FJtrad to LLVM 12 compiler, but **otherwise polly seems rarely useful**

Revisit initial questions:

- A1: recomm. usage model of 4 ranks and 12 threads often suboptimal
- A2: no "silver bullet" compiler for A64FX (yet)
 - Dep. on situation, but some hint: Fujitsu for Fortran codes, and GNU for integerintensive apps, and any clang-based compilers for C/C++
- A3: Twitter summary: "if Xeon is 70x faster than A64fx, suspect the compiler" Recommendation:

• Install & test all avail. compilers, and explore other rank/thread mappings! Jens Domke

Future Work

- Anyone interested with access to an intern/student to continue this?
- Testing Arm compilers
 - Reviewer (Arm employee) offered help
- Testing HPE/Cray compiler
- In-depth analysis on reasons for performance difference?:
 - SVE, loop transformations, prefetcher, cache behavior, etc.
- Automatic compiler-flag tuning for all Fugaku workloads
 - Eg. https://github.com/ctuning/ck/wiki/Compilerautotuning#Autotuning_LLVM_flags

Open-Source & Acknowledgements

Reproducing our data? Doing your own analysis?
 Juse our framework:

https://gitlab.com/domke/a64fxCvC or

This work was supported by

- New Energy and Industrial Technology Development Organization (NEDO); and
- Japan Society for the Promotion of Science KAKENHI Grant Number 19H04119

Job/Collaboration Opportunities

- Collaborations and job opportunities:
 - Check out our research teams and open positions: <u>https://www.riken.jp/en/research/labs/r-ccs/</u> and <u>https://bit.ly/3faax8v</u>
- Internship/fellowship for students (Bachelor→PhD):
 - Fellowship: <u>https://www.riken.jp/en/careers/programs/index.html</u>
 - Internship: <u>https://www.r-ccs.riken.jp/en/about/careers/internship/</u>
- Supercomputer Fugaku:
 - Apply for node-hours: <u>https://www.r-ccs.riken.jp/en/fugaku/user-guide/</u>
 - Interactive, virtual tour:

https://www.r-ccs.riken.jp/en/fugaku/3d-models/ and https://www.youtube.com/watch?v=f3cx4PGDGmg

Figure sources

• [1] https://www.starwars.com/news/8-great-life-teachings-from-yoda