Existing Compilation Pipelines

lvan R. lvanov (Tokyo Tech)

Parallel Optimizations and Transformations of GPU Kernels
Using a High-Level representation in MLIR/Polygeist

William S. Moses (MIT)

Polygeist Compilation Pipeline

Existing GPU compilers separate host-side
and device-

side code in separate modules

C++

Host-side | Device-side

|

|
LLVMIR [opt) | LLVMIR |ost.
Host : Device

Codegen : Codegen

Binary : Binary

|

Linking | Linking

Binary

Figure 1. GPU code compilation by clang. Note
how host-side and device-side IR never live in a
single module and they get optimised and lowered
to machine code separately.

Polygeist compiles C++ code to a single-
module MLIR representation that can be
transformed and optimized.

C++

Host-side + Device-side

Y
MLIR

/,\'

LLVMIR |0pt)| LLVMIR |opt.

Host Device
Codegen Codegen

Binary Binary

Linking Linking

Binary

Figure 2. GPU code compilation by Polygeist. Note
the ability of Polygeist to do optimizations on the
MLIR level where both the host and device-side
code exist in a single module.

Device-side Regions

To represent host and device side code within the same module and in a way suitable for
optimizations, we introduce the polygeist.gpu_wrapper operation which contains code
to be executed on the GPU inline with where in host-side code it should be executed.

func @f (%o

ut, %in

: memref<?xf32>, %n : i64,

%t : 164) {

// Code contained in this region is to be executed on the device

polygeis
parall

para
%t

%S
if

t.gpu_wrapper {
el.for (%bx, %by, %bz) = (0,

id = %bx + blk.x * %tx
ize = %n - 1 - %t
%tid < %size {

%index = %tid + %t + 1

%a = load %in[%index] : f32
%b = load %in[...] : 32
%res = %a / %b

store %res, %out[%index]

0, 0)
to (grid.x, grid.y, grid.z) {
1lel.for (%tx, %ty, %tz) = (0, 0
to (blk.x, blk.y, blk.z) {

: memref<?xf32>

Figure 3. Using the gpu_wrapper operation to specify portions of the code to be executed on the
device. This is a simplified MLIR example from the gaussian cuda benchmark in Rodinia.

Jens Domke (RIKEN)

Alternative Code Paths

In some cases, we are able to vary the block sizes of GPU kernels.
However, choosing an efficient block size at the MLIR level is difficult
due to its multi-level nature and the gradual lowering.

We introduce a new MLIR operation called polygeist.alternatives
which allows us to generate alternative code paths that achieve the
same result - in this case, launching kernels with different block sizes.
This allows us to lower each code path to LLVM and then gener-
ate device-side binaries before estimating the cost of each alterna-
tive. This allows us to look at various parameters of the kernels such
as theoretical occupancy, register utilisation, register spilling, shared
and constant memory usage.

Using this information, we build a cost model that estimates the per-
formance of each kernel and chooses the best option.

func @launch(...) {
polygeist.alternatives {

polygeist.gpu_wrapper {
// with block_size = 32
parallel.for { ... } func @launch(...) {

1, polygeist.alternatives {

polygeist.gpu_wrapper { gpu.launch_func @kernel_0 \
// with block_size = 64 block_size = 32,
parallel.for { ... } gpu.launch_func @kernel_1 \

1, block_size = 64,

L L
} }

(a) Generating alternative code
paths with different block sizes.

(b) After lowering and generating
device-side binaries.

kernel \BbckSie Registers used Stack frame size Occupancy
@kernel_0 32 1024 0 50%
100%

@kernel_1 64 2048 0]
(c) Collect statistics for the compiled kernels.

func @launch(...) {
gpu.launch_func @kernel_0 \
block_size = 32,
}

(d) The kernel with the best estimated
performance is chosen.

Since compile time cost modelling does not always achieve good re-
sults, in future work we are planning to explore runtime profiling of
kernels and dynamically using the best performing option.

Toshio Endo (Tokyo Tech)

Host-Device Code Motion

We are able to move computation from device side code to the host
and do computation only once instead of for each GPU thread. The
example given is a simplified MLIR snippet of a real benchmark from
Rodinia.

func @f(%out, %in
%h = %t + 1
%size = %n - %h
polygeist.gpu_wrapper {
parallel.for (%bx, %by, %bz) = (0, 0, 0)
to (grid.x, grid.y, grid.z) {
parallel.for (%tx, %ty, %tz) = (0, 0, 0)
to (blk.x, blk.y, blk.z) {
%tid = %bx + blk.x * %tx
// Hoisted out:
// %size = %n - 1 - %t
if %tid < %size {
// Index computation partially hoisted out:
// %index = %tid + %t + 1
%index = %tid + %h
%a = load %in[%index] : f32
%b = load %in[...] : 32
%res = %a / %b
store %res, %out[%index]

: memref<?xf32>, %n : 164, %t : i64) {

: memref<?xf32>

Figure 5. Hoisting device-region loop invariant code to the host. The original
code before the optimization is shown in Figure 5.

Evaluation

We used Polygeist to compile a supported subset of CUDA bench-
marks in the Rodinia suite. Evaluation was performed on a dual-
socket Intel(R) Xeon(R) Gold 6252 CPU running at 2.10GHz CPUs
with 24 cores, 256GB RAM, and an NVIDIA A100 GPU. We cur-
rently achieve up to 98% of clang’s performance.

o | clang Il Polygeist Polygeist with parallel optimizations enabled
[=]
& 10! 4
o
)]
>
o
5 100 -
[N
=]
3
Q
(5]
& 1071
S o KA O LD R S O &b &
&\%%x "\'%o% Qﬁ(’\e, \,690 &Y\ ’0\> &\6\5 09&\% % (bi%& ©
ﬂe?ég{*«o@@ SR @%"\o“ AN e %00& SN’
VR ’§ 336&§$@, 4\ 4 &
SRy SO S AR é,% o
TR P S eI =
fo%@.@ C’OQ &‘\%ﬁ‘@ \gﬂ\&
Cﬁ&/ AR §§
b\“ ’6@'&

Figure 6. Polygeist performance compared against clang.

References

[1] W. S. Moses et al., arXiv preprint arXiv:2207.00257 (2022).

[2] W.S. Moses, L. Chelini, R. Zhao, and O. Zinenko, Polygeist: Raising C to polyhedral MLIR, in
Proceedings of the ACM International Conference on Parallel Architectures and Compilation Tech-
niques, New York, NY, USA, 2021, Association for Computing Machinery.

	References

