We propose extending common performance measurement and visualization tools to identify network bottlenecks within MPI collectives. By creating additional trace points in the Peruse utility of Open MPI, we track low-level InfiniBand (IB) communication events and then visualize the communication profile in Boxfish for a more comprehensive analysis. The proposed tool-chain is non-intrusive and incurs less than 0.1% runtime overhead with the NAS Parallel FT benchmark.

Our Goals

1. Expose MPI’s internal performance in a portable manner
2. Develop a lightweight profiler to capture low-level metrics
3. Enable the visual, hardware-centric analysis of performance metrics

Design and Implementation

1. **Exposing Low-level Performance in Open MPI**
 - **Background**: High performance computing (HPC) systems are growing in physical size and complexity.
 - **Motivations**: MPI’s hardware abstraction hinders exposing performance from within the MPI library and from within the network layer.
 - **Experiment 1**: TSUBAME-KFC
 - Peruse defines an interface for exposing the internal performance of MPI libraries
 - User-supplied callback functions can be attached to internal MPI events
 - **Experiment 2**: NAS Parallel FT Benchmark
 - Uses the Peruse interface

2. **Non-intrusively Collect Low-level Metrics**
 - **Experiment 1**: TSUBAME-KFC
 - Developed a non-intrusive profiler named ibprof, which:
 - Uses the PERUSE_OPENIB_SEND event to aggregate messages sent from each local IB interface to each remote interface
 - Designs the network communication profile to Open Trace Format (OTF) files
 - Supports the profiling of all communication, specific collective(s), and specific code section(s)
 - **Experiment 2**: NAS Parallel FT Benchmark
 - Based on the Torus 3D module that is bundled with Boxfish
 - Can natively visualize any 2D network topology and can extend to support all topologies
 - Uses biocolored network links to accurately represent bidirectional traffic flow

Analysis Process

- **ibdijagnet files (IB config. data)**
- **ibprof output files**
- **Post-processor**
 - Create connected network graph
 - Position nodes and links
 - Map performance data to network elements (nodes and links)

Results

Profiling Overhead
- Experiment environment: TSUBAME-KFC
 - Used 32 nodes, two IB FDR switches
 - Open MPI 1.6.3 with our Peruse enhancements
- **Experiment 1**: MPI Alltoall microbenchmark
 - 30 profiled and 30 un-profiled trials
 - 20,000 collective calls (19,998 measured) per trial
- **Average communication overhead = 4.08%**
- **Experiment 2**: NAS Parallel FT Benchmark
 - 30 profiled and 30 un-profiled trials
 - **Average runtime overhead = 0.205%**

Visualizing Network Communication
- **Experiment**: TSUBAME-KFC
- **Visualizing the NPB FT benchmark (problem class: E) running on 512 nodes of TSUBAME2.5**