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Abstract
In this thought-provoking article, we discuss certain myths and legends that are folklore among members of the high-
performance computing community. We gathered these myths from conversations at conferences and meetings, product
advertisements, papers, and other communications such as tweets, blogs, and news articles within and beyond our
community. We believe they represent the zeitgeist of the current era of massive change, driven by the end of many
scaling laws such as Dennard scaling and Moore’s law. While some laws end, new directions are emerging, such as
algorithmic scaling or novel architecture research. Nevertheless, these myths are rarely based on scientific facts, but
rather on some evidence or argumentation. In fact, we believe that this is the very reason for the existence of many
myths and why they cannot be answered clearly. While it feels like there should be clear answers for each, some may
remain endless philosophical debates, such as whether Beethoven was better than Mozart. We would like to see our
collection of myths as a discussion of possible new directions for research and industry investment.
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Introduction
Any human society has its myths and legends—this also
applies to the high-performance computing (HPC) community.
HPC drives the largest and most powerful computers and the
latest computing and acceleration technologies forward. One
might think that it is scientific reasoning all the way down in
such an advanced field. Yet, we find many persistent myths
revolving around trends of the moment.

Since it is late 2022, we began our analysis by asking the
all-knowing intelligence ChatGPT “Create myths or legends
in high-performance computing”. In a HAL 9000 manner, it
refused to make up something for us: “I’m sorry [Dave], but
as an AI language model, I am not programmed to generate
or share myths or legends. My primary function is to assist
users with information and general knowledge, and I do not
have the ability to create or share fictional content.”. So, even
the smartest of internet parrots (Bender et al. 2021) that was
itself created with massive high-performance computation
running on a large accelerator system still has a long way to
go. Thus, we fall back to reasoning among the authors of this
work.

We discuss 12 of today’s HPC myths, a number that is
customary in our community, similar to a panel statement
where we debate supporting and contradicting facts with a
healthy exaggeration in one of those directions. We attempt
to neither judge nor prove folklore to be right or wrong,
but instead, try to stimulate an intensive discussion in the
community that drives our future thinking.

Myth 1: Quantum Computing Will Take Over
HPC!
Numerous articles are hyping the quantum computing
revolution affecting nearly all aspects of life, ranging from
quantum artificial intelligence to even quantum gaming.
The whole IT industry is following the quantum trend
and conceives quickly growing expectations. The actual

development of quantum technologies, algorithms, and use
cases is on a very different timescale. Most practitioners
would not expect quantum computers to outperform classical
computers within the next decade. Yet, we have constantly
been surprised by advances in device scaling as well as, more
recently, artificial intelligence. Thus, the fear of missing out
on getting rich is driving the industry to heavily invest in
quantum technologies, pushing the technology forward.

With all this investment, it seems reasonable to expect that
quantum computation, which promises to deliver exponential
speedups, will replace high-performance computation as
we know it today with its meager linear speedup through
parallelism. Yet, the nature of quantum computation poses
some severe limitations: First, reading unstructured data into
a quantum state seems very challenging. Reasonable future
quantum computer designs can read in the order of Gigabit/s
while modern single-chip processors are already achieving
Terabit/s—many orders of magnitude more (Hoefler et al.
2023).

Furthermore, once a quantum state is constructed, it can
often be “used” only once because measurements destroy
superposition. A second limitation stems from the lack of
algorithms with high speedups. Most algorithms achieve
quadratic speedups for a wide range of use cases using
amplitude amplification at their core. While this technique is
extremely versatile and can search any unstructured quantum
state (cf. Grover’s algorithm), its limited speedup is unlikely
to make it practical for quantum computers that may be
constructed in the next decades (Hoefler et al. 2023).

Thus, it seems unlikely that quantum computation is going
to replace a significant fraction of traditional HPC. It is more
likely that it will start as quantum acceleration with a small set
of use cases that may grow in the future. To determine which
use cases can realistically benefit from quantum acceleration,
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resource estimation techniques (Beverland et al. 2022)
become crucial. But unlikely does not mean impossible—
we believe that now is the right time to begin a discussion
about the role of quantum computation in HPC. Furthermore,
it is crucial to guide the resources we invest into the right
direction.

We polled the HPC community with these questions. . .

① When will quantum computing be commercially
profitable? ② What will be the first useful algorithm?
③ What will be the next breakthrough area enabled by a
new quantum algorithm?

. . .and received the following responses.

Myth 1. Feedback for ① Myth 1. Feedback for ② & ③

Myth 2: Everything Will Be Deep Learning!

Simultaneously with the quantum hype, we are in the midst
of the deep learning revolution. Indeed, in recent years
there has been a plethora of papers replacing traditional
simulation methods, or whole computational kernels with
data-driven models. Most of those employ deep neural
network architectures. Impressive results fire up expectations
equally high to the quantum world. Data-driven weather and
climate predictions apparently beat the best models (Pathak
et al. 2022; Bi et al. 2022), and output data can be compressed
by three orders of magnitude (Huang and Hoefler 2022).
Similar successes are touted in literally any application area.
There is no doubt that deep learning models can learn to
approximate complex functions used in scientific simulations
in a specific input domain. The issue is, as always, the trade-
offs: between speed on one hand, and accuracy on the other—
and we have to be very careful with these comparisons. In fact,
any result can be skewed into any of the extremes (Hoefler
2022).

Sometimes even very simple models (and they have to
be simple to be compute-performance competitive) such as
multi-layer perceptrons (MLPs) can work well enough in
place of an exact mathematical expression, e.g., Rasp et al.
(2018); Brenowitz and Bretherton (2018). One sometimes
wonders whether the latter could have been simplified in the

first place. A possible explanation is that neural nets, rather
than learning to approximate a given function in some abstract
sense, learn to decompose the input space into polyhedra
with corresponding simple mappings (Aytekin 2022). In other
words, neural nets can exploit the fact that typical input values
in many tasks are concentrated in particular ranges, which,
in turn, raises concerns about accuracy guarantees for out-of-
distribution inputs, and a possibility of some sort of hybrid /
fall-back mechanism.

An independent question is whether the architectures used
for machine learning tasks, like classification, are a good
match to serve as surrogate models in the first place? A new
line of research is addressing this by using neural architecture
search for such models (Kasim et al. 2021). In an extreme case,
the objective is to find a purely symbolic (and thus hopefully
more robust to out-of-distribution inputs) formulation for
cases where an exact mathematical expression for the problem
is not a priori known (Liu and Tegmark 2021). Uncertainty
quantification and explainability are also two main aspects of
high importance in the scientific domain where DL is lacking
(due to its black-box optimization nature).

Overall, the jury is still out as to which extent surrogate
models can replace first-principles simulations. However,
one thing is clear: there is a whole spectrum of simulation
tasks (Lavin et al. 2021)—ranging from ones where exact
mathematical expressions are not available in the first place
(e.g., the contribution of specific vegetation to weather
dynamics) and learning it from data could not only be more
efficient but also more accurate; to those where utmost
accuracy and precision guarantees are required and can
only be provided by specialized error-controlling numerical
methods.

We polled the HPC community with these questions. . .

① Will ML models replace or just augment traditional
simulations? ② Where will ML models fail to deliver?
③ How can we classify (pieces of) an application as ML-
accelerable or not?

. . .and received the following responses.

Myth 2. Feedback for ①
Myth 2. Continue discussing
questions ② and ③ on X
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Myth 3: Extreme Specialization as Seen in
Smartphones Will Push Supercomputers
Beyond Moore’s Law!

AI, like Stable Diffusion, is now in the palm of everyone’s
hand. These modern smartphones typically are driven by a
System on Chip (SoC) that consists of a plethora of special
function units (SFUs) and/or special purpose processors that
accelerate various aspects of smartphone workloads. The main
purpose of such a composition is to achieve low power for
longer battery life while maintaining acceptable performance.
The success of GPUs, growing demands for lower power and
highest performance, and the end of Moore’s law created
a myth that future supercomputer architectures will be just
like smartphones in that there will be multitudes of hardware
customization per each facet of the entire workload.

However, such a claim misses the point in the analogy, and
entirely ignores multiple drawbacks of such an approach as
described below. In fact, the only successful “accelerator”
in the recent history of HPC is a GPU. The primary
reason for its success is high memory bandwidth, a feature
known since the vector supercomputer days, which is now
adopted by mainstream CPUs such as Fujitsu A64FX and
Intel Sapphire Rapids. The reason for the acceleration
is primarily that the majority of the HPC workloads are
memory bandwidth bound (Domke et al. 2021). Thus, modern
reincarnations of vector processors, such as vector units and
fast memory with HBM/GDDR variants, have been sufficient
to accelerate such workloads beyond CPUs with slower
DDR memory (Matsuoka 2008). So, to claim that multitudes
of special accelerators will constitute a supercomputer is
stretching the success of GPUs somewhat unfoundedly.

In fact, there are mainly three reasons why the plethora
of customized accelerated hardware approach would fail.
The first is the most important, in that acceleration via SoC
integration of various SFU is largely to enable strong scaling
at a compute node level, and will be subject to the limitations
of the Amdahl’s law, i.e., reducing the time to solution, the
potential speedup is bound by the ratio of accelerated and
non-accelerable fractions of the algorithm, which quickly
limits the speedup (Matsuoka and Domke 2022). Modern
supercomputing is rather driven by weak scaling as explained
by Gustafson (1988), where the speedup is based on how
well the parallelizable or accelerable fraction can be scaled
on many nodes. This is often achieved by linearly increasing
the overall workload and maintaining a constant amount of
work per node, so the time to solution remains constant, but
performance gain is proportional to the number of nodes in
an ideal case. This was exactly how massive performance
gain was obtained, despite skepticism from the then experts,
towards massively parallel computing, culminating in the first
awarding of the Gordon Bell prize in 1987 (Bell et al. 2017).

Combination of strong and weak scaling has been
instrumental in utilizing massive parallelism and performance
speedup in modern supercomputers such as Frontier and
Fugaku, but the contribution of the latter has been greater
in absolute speedup terms*. Now, weak scaling to large
number of nodes requires that the workload can be subdivided
to achieve extremely good load balancing, i.e., (amount of
work) / (processing capability) is uniform among all nodes.
For homogeneous systems, if the workload domain is easily

decomposable, then simple uniform partitioning will suffice,
and multitudes of studies have been conducted to achieve
proper domain decomposition for more complex algorithms.
Such load balancing work can be readily be applied even
for nodes that are composed of heterogeneous elements,
provided that (a) the architecture of the nodes are largely
uniform (homogeneous) across the entire machine, and (b)
during execution, the codes will be running simultaneous on
one of the processors within the node, all at the same time
within the machine. Practically all successful ‘accelerated’
supercomputers and their applications, e.g., GPU machines
such as Frontier, follow this pattern.

However, once the nodes are composed of a plethora of
customized hardware, and expected to be utilized in a more
heterogeneous fashion as in a smartphone, load balancing
becomes extremely difficult, and thus weak scaling speedup
will flatten quickly, especially in a large parallel system. There
have been efforts to alleviate this by creating a task graph of
the workload and conduct dynamic load balancing, but have
not really achieved success for very large systems, let alone
for numerous heterogeneous accelerators.

This is why, even for GPU-based machines, not only the
node architectures are homogeneous, but also, in any given
workload only GPUs or CPUs are used dominantly, but not
typically both. Contrastingly, that large parallel program
decomposed into a smaller task/dataflow graph and executed
on-demand heterogeneously on a plethora of accelerators is
only largely beneficial for small programs on a small machine,
but not for HPC where parallelism will continue to increase
to exploit weak scaling

The second reason is the increasing difficulty of dark
silicon being available in the system to be utilized for
heterogeneously specialized hardware, for cost reasons. In the
past, dark silicon was projected to be abundant with reduced
lithography, thus justifying the “plethora of accelerators” view,
as they were available for a very low cost. However, with the
slowing down of Moore’s law, coupled with the high cost of
manufacturing due to more advanced fab technologies such
as EUV, transistor cost over time is flattening, or may even
increase. Thus, the chip cost will become largely proportional
to the number of transistors irrespective of the lithography, so
every transistor has to contribute to the overall performance
improvements in a major fashion, turning dark silicon into
expensive unused silicon.

For smartphones, the major cost of the phone is not the
SoC but rather in the peripherals such as the screen, camera,
flash memory, etc., and the battery life is premium in the
cost metric so extra cost incurred by dark silicon may be
tolerable. For supercomputers, however, the major cost of
the machine is the processors themselves, dominating over
50% of the overall capital expenditure (CAPEX). So unless
the acceleration could benefit some major proportion of the
workload, dark silicon would become an intolerable waste.
That is why, over generations, accelerators such as GPUs

∗If one considers power efficiency for system scaling, massive weak
scaling would not have been possible without dramatic increase in
power/performance of compute nodes. However, such improvements usually
allow increase in the number of nodes and/or processor units, thus helping to
push weak scaling; as such, in terms of algorithmic scalability, weak scaling
is still the dominating factor.
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tend to become more general purpose to cover an increasing
proportion of the workload, ultimately becoming as general
purpose as the CPUs (or GPGPUs).

The third reason is software and productivity. Unless the
accelerator usage is extremely easy, e.g., hidden under a set
of very simple APIs, expecting the programmers to adopt
an arcane programming model is not viable. In fact, this is
more serious for HPCs where the market for applications
is much smaller than major commodity ecosystems such
as smartphones, with a less performance-conscious but
extremely large market. Thus, for example, a large consumer-
oriented IT company such as Apple can afford to replace a
part of its API for a phone with hardware because it will sell
more than 100 million iPhones, but not for supercomputers
that have a much narrower market and thus do not warrant
such investment.

We polled the HPC community with these questions. . .

① Will extreme heterogeneity happen? ② Are supercom-
puter workloads worth extreme specialization? ③ When
will we have production supercomputers with more than
one accelerator type?

. . .and received the following responses.

Myth 3. Feedback for ① Myth 3. Feedback for ② & ③

Myth 4: Everything Will Run on Some
Accelerator!
Related to our previous myth, even if one accepts that there
will not be a plethora of accelerators, there could be a few
such as GPUs or FPGAs, where the dominant portion of
the workload will run. Indeed, for GPU-based machines
that would be an assumption, lest the extra investment will
not make sense. However, one could question, would some
superchip such as GPUs largely replace the CPUs, the latter
be degraded to second-class citizens? It is not trivial as it may
seem, as such statements are rather dogmatic and not based
on candid analysis of the workloads. By proper analysis of
the workloads, we may find that CPUs may continue to play
a dominant role, with the accelerator being an important but
less dominant sidekick.

From the hardware perspective, workloads can be largely
divided into three classes, (C) compute-bound, (B) memory
bandwidth-bound, and (L) memory latency-bound. Any
application will be composed of multiple compute kernels,
each one being able to be largely classified into one of the
three in Figure 1. Over time, supercomputer architectures
have evolved in an attempt to cover all three in effective ways.

Up until the 90s, special-purpose vector machines such
as Cray and NEC SX accelerated largely (B), and (C) to
some extent. This was largely due to the dominant workload
that was CFD which was largely (B). Then in the 90s,
the microprocessor evolution for HPC happened, utilizing
the commodity one-chip CPUs which had become very
powerful due to high-end applications such as engineering
and multimedia needs, starting with workstation/server
RISC and then later x86 processors in massively parallel
fashion, e.g., DoE ASCI Red. Individual processors were
mediocre in performance but attained performance via
massive parallelism, exercising weak-scaling, cf. Myth 3.

Then in the late 2000s, although achieving Petascale
performance was pioneered with the DoE Roadrunner and
Jaguar machines, there was an ambition to achieve exascale
by the late 2010s, achieving 1000x scaling in performance
in 10 years. The roadblock was power/performance
using conventional CPUs. However, by the late 2000s,
the GPUs were evolving from their graphics-specific
purpose to become general-purpose compute processors,
as they were architectural descendants of classical vector
processors Matsuoka (2008). Different from classical vectors
where the floating point performance had been significantly
enhanced, motivated by graphical workloads, and when
generalized, the GPUs were now covering (C) and (B),
while (L) was left for CPUs as the GPU vector pipeline
had very long latency. CPUs that facilitated SIMD vector
units with high bandwidth memory such as the Intel Xeon
Phi and Fujitsu A64FX brought in classical vector properties
back into the CPUs, so in a sense, homogeneous systems
composed of such chips were not direct reincarnations of
simple commodity CPU-based massively parallel machines,
but rather, can be more regarded as converging the GPU and
CPU properties.

Circa 2022, the top machines are either homogeneously
configured heterogeneous CPU-GPU nodes, or ‘converged’
nodes such as RIKEN Fugaku or forthcoming machines with
Intel Sapphire Rapids CPUs with HBM. However, this is not
the only possible combination, and other configurations have
not been properly explored. For example, one could conceive
of a machine with the latter configuration, with purpose-built
matrix-based accelerators for compute-intensive kernels as a
separate chip (or chiplet). In such a machine, the CPU would
cover workloads (B) and (L), while the matrix accelerator will
cover (C). The benefit of such a machine would be ease of
programming of (B) workloads which often involve complex
memory access patterns, and thus porting to GPU codes has
proven to be challenging.

For further acceleration of (L) workloads, there is a limit to
acceleration, such as molecular dynamics that require strong
scaling. The best strategy seen for such workloads is fully
customized data pipelines such as Anton (Shaw et al. 2008)
with hardware design time synthesis. One could almost mimic
such customization with cost but make it programmable
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Figure 1. Classification of Compute Kernels and Supercomputing Architecture

by FPGAs or CGRAs. Such dataflow customization could
also be useful for compute-bound workloads such as DL
Transformers, if small matrix engines as special function units
can be conjoined in a larger macro dataflow as seen in modern
FPGAs and CGRA chips. As such, in such a machine, (B)
will be covered by CPUs, while (C) and (L) will be covered
by a ‘strong scaling accelerator’.

As we observe here, we find that we have not even covered
the possible configurations of divergence/convergence of
processing units, as the only mainstream ‘accelerated’
machines are GPUs with the second property, while other
design spaces have not been properly explored.

We polled the HPC community with these questions. . .

① Will CPUs become pure “servants” to the accelerators?
② Are accelerators actually more than just better-balanced
processors? ③ Will reconfigurable accelerators see a
renaissance?

. . .and received the following responses.

Myth 4. Feedback for ① Myth 4. Feedback for ② & ③

Myth 5: Reconfigurable Hardware Will Give
You 100X Speedup!

In a “fool me once. . . ” fashion, one accelerator, in particular,
has taken the HPC community by storm with lofty promises
of 100x speedup (Lee et al. 2010) ever since the first
ported matrix-multiplication by Larsen and McAllister (2001).
Fueled by NVIDIA’s gross margin of over 50% (Macrotrends
LLC 2022), and supported by billions of dollars from US DOE
for ECP and similar programs in other parts of the world, the
HPC community eventually migrated to a well-designed and
broadly adopted GPU/CUDA ecosystem. Consequently, 164
systems of the TOP500 list utilize accelerators from NVIDIA.
Nearly two decades later, Fugaku has shown that it only took
long vectors and high-bandwidth memory to match GPU
performance and energy-efficiency for many workloads. One
positive aspect is that much code has been “modernized”, i.e.,
rewritten in CUDA or languages and frameworks promising
portability to utilize new devices. But the open question is
how portable are these modernized codes really? Can they
run seamlessly on all new devices?

The global FPGA market was recently valued at about
one-third of the global GPU market (Allied Market Research
2020, 2022). Major chip vendors buying the leading FPGA
hardware vendors, AMD acquired Xilinx and Intel bought
Altera, respectively, indicates an interest in FPGA integration
into future mainstream products. However, so far this has not
materialized. Whether FPGA can replace or complement the
mainstream GPUs in the HPC and data center market hinges
on the questions regarding the cost-to-performance ratio,
an existing software ecosystem, and most importantly the
productivity of programmers. Unfortunately, we see hurdles
in all these areas, which the community and industry might
be able to solve with enough time and money. Without
offering at least a factor of 10x performance gain at moderate
porting costs, “FPGAs are not a factor in our current planning,
because of their unprogrammability” (Sorensen et al. 2019).

Whether reconfigurable logic can replace or amend GPUs
as accelerators is interesting. FPGAs will certainly have a
harder time due to their high flexibility which comes at a cost.
Units built from reconfigurable logic are 10–20x less energy
and performance efficient in silicon area. This issue can be
addressed by hardening certain blocks, e.g., floating point
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units, as some FPGA companies do. However, even then, the
whole control path would be much less efficient, and it is
unclear whether program-driven execution is that much less
efficient compared to reconfigurable dataflow. A new line of
reconfigurable accelerators as materialized in Xilinx’ adaptive
compute acceleration platform are similar to coarse-grained
reconfigurable arrays (CGRAs) and offer more programmable
blocks with a configurable dataflow interconnect. But if now
90% of the chip are hardened units, are those devices just
GPUs with a less mature ecosystem?

We polled the HPC community with these questions. . .

① Will the HPC community embrace FPGAs as
alternatives to GPUs in large-scale production systems?
② Can the community afford a “Fool me twice. . . ”
moment? ③ Will CGRA-style reconfigurable dataflow
accelerators take the place of FPGAs to compete?

. . .and received the following responses.

Myth 5. Feedback for ① Myth 5. Feedback for ② & ③

Myth 6: We Will Soon Run at Zettascale!

Maybe FPGAs are the way to zettascale. With Aurora still
under construction, Intel ignited the debate about zettascale
in late 2021. While the HPC community initially smirked
at their plans, Intel continued pushing the zettascale agenda,
culminating in the latest claims to achieve 1 zettaflop/s by the
end of the decade (Cutress 2022a). This proposition needs to
be addressed, and we try to put their claims into perspective
and predict a realistic timeline. Obviously, we cannot rule out
that Intel has a secret, revolutionary technology that they plan
to commercialize in due time, however, let us not speculate
now and instead build on publicly available data.

But first, we have to distinguish the terms. We assume
in the following, that (1) “zettaflop system” refers to
any computer capable of achieving over 1021 double-
precision floating-point operations (“FP64”) per second
on the Linpack benchmark; (2) “zettaop system” refers
to any computer theoretically capable of performing 1021

operations† per second, and (3) “zettascale system” denotes

any computer executing a scientific application with a
sustained performance of over 1 zettaflop/s in fp64.

Before we extrapolate, we look at historical trends
by Strohmaier et al. (2022). The HPC community achieved
1.068 teraflop/s with Sandia/Intel’s ASCI Red in the summer
of 1997, 1.026 petaflop/s with Los Alamos/IBM’s Roadrunner
in the summer of 2008, and achieved (unofficially)
1.05 exaflop/s in spring of 2021 with China’s OceanLight
system and 1.1 exaflop/s with Oak Ridge/HPE’s Frontier in
summer 2022. Not only do 11 and 13 years lie in between
these achievements, respectively, but also multiple megawatts.
ASCI Red consumed “only” 0.850 MW, Roadrunner increased
that to 2.35 MW, and OceanLight and Frontier now consume
35 MW and 21.1 MW, respectively. This and Figure 2 show
that the energy efficiency of modern chips cannot keep up
with the demand for increased computing.

Back to Intel claiming to manage 2x performance
improvements year-over-year, which would yield zettaflop/s
by 2032—but at a power requirement of the entire
system of 50–100 MW (Cutress 2022b). Hence, this 1,000x
in performance comes at the cost of 3–5x in power;
and reformulated: the energy efficiency to perform fp64
operations needs to increase by 200–350x, from ≈50 to
over 10.000 Gflop/s

Watt . Even under idealized conditions and
using Frontier’s Rpeak as the baseline, this goal requires
a 125x improvement in 10 years, and all of that while
other big players slowly acknowledge the end of practical
silicon scaling laws (White 2022). If we believe the IEEE
IRDS™ (2021) roadmap, we might gain 5x in power
density (optimistically rounded from 4.27x) by 2034 at 7 Å
compared to 5 nm. This leaves 25x, which we could split
into 5x from increased transistor count per chip and 5x from
increased node count per system. Can we cool the former,
yes (Wu et al. 2021), and can we interconnect the latter?
Sure, but doing so, at 2.5 GW, comes down to the will to
invest more than anything else, and without revolutions in
memory and interconnect technologies, we might see Linpack
transition into memory- or I/O-bound territory, nullifying any
computational advances.

On the other hand, a zettaop/s system at 100 MW in 2032
is far more likely, since low-precision units (such as tensor
cores) can boost the op/s

Watt metric, e.g., currently fp16 tensor
cores demonstrate an 8x advantage over fp64 vector units.
Lowering the precision further from fp16 to 3-bit operands
could allow for another 5x improvement (Frantar et al. 2022),
but only if the industry (and HPC community) sees the need
for adding these low-precision units, as we discuss in Myth 11.
Considering the above, our more realistic, yet optimistic,
timeline for zetta is zettaop/s in 2032 at 50 MW, zettaflop/s
in 2037 at 200 MW, and zettascale by 2038. Can Intel, or
anybody else, pull it off before then? Only time will tell.

†An exact and consistent definition of “operation” in this context is still
debated in the HPC community.
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Figure 2. Historical fp64 power efficiency [in Gflop/s
Watt ] extrapolated until 2038 to put Intel’s zettaflop/s claims into perspective.

We polled the HPC community with these questions. . .

① Will we reach zettaflop/s performance or will fp64
lose relevance before? ② Will we continue to build
more power-hungry supercomputers as we did in the
past? ③ Which one will happen first: zettascale, practical
quantum advantage, or all internal combustion-based
engines cease to be produced?

. . .and received the following responses.

Myth 6. Feedback for ① Myth 6. Feedback for ② & ③

Myth 7: Next-Generation Systems Need More
Memory per Core!
Before, on the road to peta- and exascale, application
scientists continuously raised alarms that the memory per
core is decreasing with each new computer generation.
This was mainly due to the quick growth in the number
of cores, while the performance per core was stagnating.
Yet, many workloads can keep those cores utilized with a
relatively small working set while staging larger amounts of
data remotely and/or recomputing parts. Much of this large

memory requirement seemingly turns out to be legacy, and
somewhat wasteful, design from times when memory space
was abundant compared to other resources.

Simplistic arguments along the lines of “we need more
of X” seem to have a solid tradition in our community. For
example, the HPC community spent the first decades hunting
more floating-point computations per second. Recently, a
demand for larger and faster memory replaced this main goal.
The community nearly made a complete 180-degree turn,
with Haus (2021) saying “computation is free” and Ivanov
et al. (2021) showing “data movement is all you need”.
Some even argue that this turn was taken too late due to
the fixation on flop/s. While this was all true at the time,
the general discussion should really be about the intricate
relation between the application requirements and the system
capabilities in terms of balance, i.e., the ratio between the
different resources such as memory size/bandwidth and
compute (Czechowski et al. 2011).

These ratios usually shift with chip technology and
architectural choices. For example, Moore’s law drove the
costs for compute on chip down over decades, but off-chip
communication was limited by Rent’s rule. This led to the
recent data movement crisis. Newly emerging optical off-
chip connectivity, see Myth 8, as well as 3D integrated
memory (Domke et al. 2022) shifts the balance again and
may alleviate many of these aspects, at least at the scale of
a single chip. It seems key to understand the malleability of
applications, i.e., which resources can be traded for which
other resources (e.g., memory capacity for computation
bandwidth using recomputation or caching as techniques).
Here, specifically, I/O complexity analysis is a tool to deeply
understand this trade-off. Once all trade-offs are understood,
requirements models (Calotoiu et al. 2018) could be used to
fix trade-offs into designs. These models could then inform
architectural choices as well as hardware developments.

One area to highlight in this context is embedded design,
where such trade-offs have long been used to build real
systems due to resource scarcity (e.g., battery). While those
designs were initially limited to very narrow application
domains (e.g., radio signal, audio, or video processing),
embedded devices have recently been expanded towards
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more diverse workloads (“apps”). We believe that HPC
can learn from this field by defining clear system design
methodologies based on a solid combination of empirical
and analytical modeling. More particularly, systems design
in HPC can benefit from the embedded systems’ doctrine
of accounting for over-engineering just as one accounts for
under-engineering.

We polled the HPC community with these questions. . .

① When will the current “data movement” focus end?
② What will be the next bottleneck resource? ③ Will
our community be able to adopt a performance modeling
discipline to discuss bottlenecks scientifically?

. . .and received the following responses.

Myth 7. Feedback for ① Myth 7. Feedback for ② & ③

Myth 8: Everything Will Be Disaggregated!

To stop the waste of memory resources, the academic
community is advancing on the Silicon Photonics front (Abali
et al. 2015; Gonzalez et al. 2022) and industry is pursuing
scale-out technologies (Li et al. 2022), such as Compute
Express LinkTM (CXL), a cache-coherent interconnect for
data centers. But a few players seem to push the idea over
the edge with their plans to disaggregate everything (NTT
R&D 2020; Shan et al. 2022). As Gonzalez et al. (2022)
stated: “An optical interconnect is more appealing than an
electrical interconnect for memory disaggregation due to three
properties: its (1) high bandwidth density significantly reduces
the number of IO lanes, (2) power consumption and crosstalk
do not increase with distance, and (3) propagation loss is low.”
However, several barriers remain before we can fully replace
copper-based interconnects in our supercomputers.

Generally, we see two remaining challenges for the broad
adoption of Silicon Photonics and all-optical interconnects:
low-cost manufacturing and optical switching. The former
is obvious, because after all, the data center and HPC
communities rely on inexpensive components to optimize the
overall system performance-to-cost ratio. The latter challenge
is less obvious for the uninitiated. Current electrically
switched networks can operate in “packet switching” mode

to effectively lower the observable latency and utilize the
available link bandwidth. The alternative to this mode
is “circuit-switching” and it was abandoned by the HPC
community long ago in favor of packet-switching. However,
without (cost-)effective means to buffer light, process photon
headers in-flight, or reverting to electric switches with
expensive optical-electrical-optical conversions, we would
have to resort to circuit-switching (Bergman et al. 2022)
with all the inherent deficiencies: complex traffic steering
calculations, switching delays, latency increase due to lack of
available paths, under-utilization of links, just to name some.

For HPC, an extensive or extreme disaggregation yields
another challenge, specifically the speed of light. Photons
travel at a maximum speed of 3.3 ns/m in hollow fibers
(or slower in other transport media). This is equivalent to
a level-2 cache access of a modern CPU, but does not yet
include the disaggregation overhead, such as from the CXL
protocol itself, switching, or optical-electrical conversions at
the endpoints. At 3–4 m distance, the photon travel time alone
exceeds the first-word access latency of modern DDR memory.
Therefore, if main memory would be disaggregated beyond
rack boundaries, it will become noticeable for memory-
latency sensitive applications, cf. Myth 4. The more sensible
solution for future HPC systems, in line with Myth 7, is to
use smaller node-local memory configurations (e.g., HBM3)
paired with rack-local, CXL-based memory pools, if the
capacity- and performance-to-cost ratios of the memory pool
(plus needed interconnect) can outperform node-local SSD
solutions.

We polled the HPC community with these questions. . .

① Will CXL be deployed widely in HPC? ② Will large-
scale supercomputers be disaggregated beyond rack-
scale? ③ Should we disaggregate main memory?

. . .and received the following responses.

Myth 8. Feedback for ① Myth 8. Feedback for ② & ③
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Figure 3. Examples of “Algorithmic Moore’s Law” for different areas in HPC; Fusion energy and combustion simulation data by Keyes
(2022) and climate simulation data by Schulthess (2016)

Myth 9: Applications Continue to Improve,
Even on Stagnating Hardware!

Modernizing hardware, with Silicon Photonics, Tensor Cores,
or simply shrinking transistors, has too long been the primary
method of accelerating legacy software. More than half
of this improvement was based on Moore’s law and its
observation that transistors will continue to become smaller
every few years (originally 18 months). The remaining
hardware improvements came from architectural innovations,
such as deeper cache hierarchies, the migration to more
specialized architectures (e.g., GPUs), or the utilization of
larger and wider vector-units (SIMD), as well as scaling the
HPC systems up by giving them more processors and cores.

Unfortunately, we are no longer seeing the consistent
technology scaling that Moore observed. Consequently, in
the so-called Post-Moore era, the “performance road” forks
three-ways, yielding the following options: (1) architectural
innovations will attempt to close the performance gap, and
an explosion of diverging architectures tailored for specific
science domains will emerge, or (2) alternative materials and
technologies (e.g., non-CMOS technologies) that allow the
spirit of Moore’s law to continue for a foreseeable future,
or (3) we abandon the von-Neumann paradigm together and
move to a neuromorphic or quantum-like computer (which,
in time, might or might not become practical as discussed in
Myth 1). One major aspect that reflects the uncertainty about
the future is the initiatives of unprecedented scale: CHIPS act
in the US and similar initiatives in other countries in the order
of 100s Billion USD, quantum computing initiatives in the
order of 10s Billion USD, etc.

But one point that is often overlooked is that algorithmic
improvements in HPC (dubbed as “Algorithmic Moore’s
Law” by Keyes (2022)) have over time provided exponential
improvement in key areas of HPC, see Figure 3. Similar
reports attribute a significant portion of the performance
improvement in many legacy codes to be from numerical
solvers, algorithms, low-precision numerics, system software,
etc Schulthess (2016). However, we have to be cautious that—
just as hardware improvements have physics and engineering
limits—the “Algorithmic Moore’s Law” also has its limits:

numerical stability, hitting asymptotic limits, etc. That being
said, those limits might not be as clear and quantifiable as
the limits on hardware. That is because even if one numerical
method hits its limit, domain experts can often reduce/pre-
condition their problem to another numerical method that
is more efficient. Yet, once a linear-time algorithm is found,
there remains little room for improvement.

We polled the HPC community with these questions. . .

① As the performance improvements from hardware
technologies drop, should the HPC community dramat-
ically increase the investment in software? ② Will the
“Algorithmic Moore’s Law” end soon as well? ③ To what
extent is the HPC community willing to refactor/rewrite
legacy codebases when/if hardware stagnates?

. . .and received the following responses.

Myth 9. Feedback for ① Myth 9. Feedback for ② & ③
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Myth 10: Fortran Is Dead, Long Live the DSL!

Applications might have limits, but what about languages?
How often have we heard “Fortran is dead, long live X”?
Slogans like this have been resonating in the community for
nearly 40 years (Post 1982). X has been everything from
C to C++, and more recently Python or Domain-Specific
Languages (DSLs). Yet, Fortran remains in wide use in
important communities such as weather and climate, even
for newly written codes. Other languages, such as COBOL,
were indeed replaced with more modern alternatives such
as Java. Why is this? Are some parts of our community just
stubborn to follow the youngsters? Or are old languages not
necessarily bad for the task? Indeed, Fortran is a very well-
designed language for its purpose of expressing mathematical
programs at the highest performance. It seems hard to replace
it with C or other languages and outperform it or even achieve
the same baseline. This may be due to the highly optimized
Fortran compilers or the limited language features (e.g., no
pointer aliasing) that enable more powerful optimizations.

Fortran and other general-purpose languages remain
competitive with many DSLs on CPUs (Ben-Nun et al.
2022) and are recently also adopted to GPUs, albeit often
less elegant. General-purpose portability approaches such as
SYCL (Keryell et al. 2015), also powering Intel’s oneAPI,
or OpenMP provide flexibility as well as some portability
across devices. High-productivity general-purpose languages
are hard to accelerate in practice. For example, Python’s
flexibility (e.g., monkey patching and flexible typing) disables
many static optimizations. However, when restricting the
syntax to high-performance Python (much of NumPy), then
optimizations become simpler (Ziogas et al. 2021). Any
language becomes more complex over time—Fortran 66
evolved into the complex Fortran 2018 language standard.
Similar trends affect DSLs that are widening their scope over
time. Do we require this generality? If yes, then DSLs are
doomed to fail, or they morph into general-purpose languages.

Another argument is that the lower levels usually
remain C/C++ and programmers interested in the highest
performance are often happy to dig into the lower levels. Then
the question remains—where should the portability layer be
located? At a (virtualized) Instruction Set Architecture (ISA)
as in LLVM’s IR (Lattner and Adve 2004), some lower-level
language such as C/C++ as in SYCL/oneAPI, or even dataflow
graph representations as in DaCe (Ben-Nun et al. 2019)?

We polled the HPC community with these questions. . .

① When will programmers stop using Fortran for new
applications? ② Will we ever have more application codes
written in DSLs than general-purpose languages? ③ What
will be the next big DSL?

. . .and received the following responses.

Myth 10. Feedback for ① Myth 10. Feedback for ② & ③

Myth 11: HPC Will Pivot to Low or Mixed
Precision!
A high-performance language is nothing without proper data
types, but high-precision operations such as fp64 come at a
significant cost in terms of silicon area, energy, and speed,
according to Myth 6. Lowering this precision can save costs
but may reduce the accuracy of the results and, in the worst
case, break the application (e.g., convergence). But there is
more to this trade-off: what if a more clever implementation
could maintain convergence properties of high-precision
numerics, while enjoying the computational efficiency of
lower precision? One common trick is using mixed precision
on the algorithmic level, for example, using low precision
for individual particles and only using high precision for
aggregated values (Kutzner et al. 2019). Some processors
offer mixed precision tricks at the hardware level in the form
of instructions with low-precision inputs but higher precision
accumulations.

There is however more to reduced precision than using
fewer bits—the question is how to optimally distribute bits
between mantissa and exponent (Tesla, Inc. 2021), or even if
to use an entirely different (not IEEE-754) way to represent
numbers (Gustafson and Yonemoto 2017). The story of
reduced precision in AI hardware is quite telling: In the early
days of the field, predominantly the IEEE fp32 format was
used, but knowing that in deep neural nets, the weights and
activations are typically distributed on a small range of values,
researchers began to explore the fp16 format. Soon the Pascal
generation of GPUs with fp16 performance—at a factor of
two compared to fp32 was released—and the magic did not
happen by itself. Exploding and vanishing gradients, outlier
weights, etc., made training large deep neural nets require
extra effort to stabilize (incurring corresponding overhead) or
just did not converge at all. The next generation of devices
came with bfloat16 format—same 16 bits, but more bits
allocated to the range, less for the precision. It worked better,
but still once in a while, a model would collapse. Finally, the
recent generation of GPUs came with a 19-bit numeric format,
misleadingly called TensorFloat-32. So far it seems to be at
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the sweet spot for artificial intelligence workloads—allowing
for noticeably faster arithmetics than fp32 while maintaining
enough numeric stability for the models to reliably converge
without extra programming effort.

Now that mixed precision is a de facto standard in the AI
domain, more hardware support is being implemented. So
far, there is no general clarity on the limits—how few bits
can we get away with in different HPC areas? The following
factors in particular are important to consider as we move
forward. A fully transparent solution for the problem is to
simulate higher precision using low precision operations,
e.g., as shown by Ootomo and Yokota (2022). Our Myth 4’s
memory-bound problems in particular are good candidates
for exploiting “simulated” high precision, since the overhead
can be masked by data transfers. It is not clear however if this
incurred overhead is an acceptable price that HPC agrees to
pay for remaining in higher precision. A less transparent
method is to approach the problem as a precision auto-
tuning task by adapting the precision to a minimum while
bounding the error, e.g., as demonstrated by Menon et al.
(2018). One main limitation of that method is the reliance
on automatic differentiation (AD) to track error propagation,
which is not practical for large codebases. Finally, the least
transparent approach requires domain experts in HPC to study
the numerical stability of solvers to identify, on a case-by-case
basis, the susceptibility of solvers to lower/mixed precision.
While this approach is viable for solvers that are wrapped in
libraries to be consumed by HPC domain experts, it is unclear
whether domain experts writing their own solvers (common
in HPC) would be willing to take on this burden.

We polled the HPC community with these questions. . .

① Is the HPC community ready (or already late?) to react
to the new low-precision formats driven by deep learning?
② Will HPC navigate itself into a high-precision niche?
③ When if ever, will the industry drop fp64 support?

. . .and received the following responses.

Myth 11. Feedback for ① Myth 11. Feedback for ② & ③

Myth 12: All HPC Will Be Subsumed by the
Clouds!

The rapidly advancing AI and new precision options have
reignited the cloud discussion. Whether clouds will subsume
supercomputing has been ongoing for more than a decade,
since the late 2000s Deelman et al. (2008), but remains
inconclusive. Today’s cloud offerings offer a wide spectrum
for HPC customers, ranging from low-cost standard virtual
machines to specialized top-gear HPC equipment in the cloud.
It is not surprising that cloud providers offer exactly the
same performance as on-premise supercomputing centers in
practice De Sensi et al. (2022). After all, they simply buy
the same hardware! Thus, this discussion is more of a fiscal
argument with an interesting economy-of-scale twist.

There are actually bidirectional aspects to the cloud-vs-
supercomputer argument. One is the so-called “cloudification
of supercomputers”, and the latter is “supercomputification
of clouds”, but they often get mixed up leading to confusion
in the discussions. We must look at both aspects, and it is in
fact the latter where such subsumption may happen or not.

The former, “cloudification of supercomputers”, is an
unmistakable trend, in that various software stack features
and APIs are added so that supercomputers effectively
become high-end compute resources in the same manner as
commercial clouds. Indeed, many major supercomputers are
already facilitating cloud features, so that they are effectively
clouds themselves, and interoperable with commercial clouds.
However, this assumes that there is already a supercomputing
resource facilitated for themselves, and does not directly affect
the subsumption argument.

The latter, or “supercomputification of clouds”, is where
subsumption may happen, in that clouds nowadays can
support features as well as performances of dedicated
supercomputers directly, such that they are directly amenable
as their replacement. Certainly, there are now multiple cloud
services that facilitate virtual compute clusters in the cloud.
However, although Intersect 360 reports that the HPC-in-
the-cloud compound annual growth rate (CAGR) has been
dramatic, over 80% in 2021 Intersect360 Research (2022),
it also reports the overall high growth in the HPC market,
especially in the high end, and also projects that the growth
in the cloud HPC market will flatten over time to be
consistent with the overall HPC industry growth. Continued
investments by all major global regions in exascale machines
and beyond, coupled with companies facilitating their own
top-ranked machines, will likely continue to fuel the on-
premise infrastructure growth.

In fact, for enterprise IT infrastructures, there has always
been a swing between on-premise and public clouds, largely
driven by economics. While standing up comprehensive
internal IT has become less attractive with multitudes of
cloud services readily available in the cloud, so the capital
expenditure (CAPEX) for clouds would be cheaper, especially
for small enterprises and startups, for large enterprises there
is a tendency to move back to on-premise infrastructures,
as the operating expenditure (OPEX) of clouds could be
expensive. The same could be the case of HPC increasingly as
the whole field would pose continuous uprisings in economic
viability for industry and societal benefits, thus being driven
by economic metrics.
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However, the variant of the subsumption scenario is
that, although on-premise supercomputers continue to exist,
processors and other hardware developments will be largely
driven by enterprise HPC needs, currently dominated by
AI / deep learning workloads. The R&D expenditures of
hyperscalers in IT now outclass the government investments,
and increasingly the hyperscalers are investing in high-end
computing. If the commercial cloud hyperscalers can work
out the scale of economy in their own hardware manufacturing
to the extent that, it could build and operate large-scale
HPC infrastructures cheaper than on-premise supercomputers
of any size, then the swing could totally happen towards
full subsumption— although somewhat unlikely, this could
compromise the ability to cover some traditional HPC
workloads that do not meet main industrial needs, such as the
requirement for dense 64-bit linear algebra capabilities.

We polled the HPC community with these questions. . .

① When will more than half of the HPC cycles be spent in
the cloud? ② Will on-prem systems be a niche or remain
with a significant fraction of HPC cycles spent? ③ What
could be a defining development to decide between cloud
and on-prem HPC?

. . .and received the following responses.

Myth 12. Feedback for ①
Myth 12. Feedback for ② and
continue discussing ③ on X

Conclusions
Many myths shape the discussions in the HPC community
today—in this work, we debate some of those myths and
hope to stir up arguments. While we present them in an
exaggerated and humorous way, many of those myths form
the core of thinking in our community. Some may be more
divisive than others, but it seems that many are hard to answer
definitively. Perhaps some points will be settled in the future,
whereas others will not. Yet, their sheer importance mandates
serious treatment to help guide future directions for academic
research but also industry and government investment.

To better grasp the divisiveness in our community and to
strengthen our anecdotal evidence about these myths, we
conducted large-scale polls within the data center and HPC

Figure 4. Sentiment analysis of our HPC community conducted
via Twitter polls reveals that many do not believe in these myths
(in red; strongly disagree on the spectrum) or maintain a pessi-
mistic bias toward the posed questions, while a slightly smaller
number of pollees are hopeful that these myths become reality.

community in recent months. Our closing questions from each
section served as the basis for the polls, and we visualize the
individual results thereafter. Across our 33 polls we received
2.557 votes, or an average of 77 votes per poll (min=36;
max=195). For better visualization, we categorize the polls
and answers on a sentiment scale; from disagreeing with the
myth (typically colored in red) to believing in the myth (blue
color). The ones vehemently objecting to the myths have only
a small edge with a total of 794 responses across all sentiment
polls, while the true believers accumulated 682 responses. If
Myth 10 would have been less one-sided, then the number
of believers and disbelievers might as well have been near
identical. Maybe Fortran will outlive us all despite the many
graveside speeches, including the most recent one by Shipman
and Randles (2023)?

In Figure 4, we summarize the sentiment analysis across
all 12 myths and sub-questions. The most notable outliers are
likely the disbelieve that Fortran will vanish any time soon,
and the believe in reconfigurable hardware (Myth 5). The
latter is also somewhat controversial within the three polled
questions—while the majority does not believe in FPGAs for
HPC, a similarly majority believes that we have the time &
money to try (and should do so?).

With our community indeed being fractured, only time will
tell which of these 12 myths will become true legends!
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