
Tracing Data Movements within MPI Collectives

Kevin A. Brown, Jens Domke and Satoshi Matsuoka
Tokyo Institute of Technology

2-12-1-W8-33, Ookayama,Meguro-ku,
Tokyo 152-8552, Japan

{brown.k.aa, domke.j.aa}@m.titech.ac.jp, matsu@is.titech.ac.jp

ABSTRACT
We propose extending common performance measurement
and visualization tools to identify network bottlenecks within
MPI collectives. By creating additional trace points in the
Peruse utility of Open MPI, we track low-level InfiniBand
communication events and then visualize the communica-
tion profile in Boxfish for a more comprehensive analysis.
The proposed tool-chain is non-intrusive and incurs less than
0.1% runtime overhead with the NPB FT benchmark.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—Performance
measures

Keywords
Performance analysis, MPI, Peruse, profiling

1. INTRODUCTION
Supercomputers are rapidly growing in size and their net-

works are simultaneously growing in complexity. With this
trend, inter-process communication becomes a significant
performance factor, especially with communication bound
programs [1]. The de facto standard for inter-process com-
munication on these systems, the Message Passing Interface
(MPI) [7], abstracts the hardware layer from the applica-
tion; this makes it difficult to explicitly link application per-
formance to network activity.
Unlike process-centric tools like Scalasca and Vampir, Box-

fish [3] uniquely circumvents this abstraction by including
network utilization metrics in application performance anal-
ysis. Nonetheless, monitoring network activity within collec-
tives and other complex routines remains challenging since
tracing and profiling is done in the application layer.
We present a method for conducting performance analysis

of collective communications running on complex networks.
This involves adding new trace points into Peruse [4], a per-
formance revealing extension in Open MPI. The new events,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
EuroMPI/ASIA ’14, September 9-12 2014, Kyoto, Japan
Copyright 2014 ACM 978-1-4503-2875-3/14/09 ...$15.00.
http://dx.doi.org/10.1145/2642769.2642789.

which track point-to-point network events within MPI, are
recorded using a non-intrusive profiling library that we de-
veloped. Finally, we create a new visualization module for
Boxfish to reveal possible network bottlenecks in applica-
tions running on InfiniBand-based fat-tree networks.

2. RELATED WORK
Landge et. al [6] described how to capture the flow of

network packets on IBM Blue Gene/P for tracing appli-
cation communication over network links. However, the
tracking of network packets was done by capturing port
counters at pre-set points during the application run. Un-
like our approach, this method is impractical for systems
running multiple applications simultaneously. Additionally,
their method is limited to torus networks while ours can be
used on any InfiniBand-based network.

3. DESIGN

3.1 Extending Open MPI
Peruse facilitates the tracking of internal events within

MPI communication operations by linking a user-supplied
callback function to those events. We added a new Peruse
event, PERUSE_OPENIB_SEND, to Open MPI’s byte transfer
layer (btl) for tracking data sent via InfiniBand network
ports. The event is placed immediately after each Infini-
Band ibv_post_send command is issued, thus allowing us
to overlap the communication with our callback function in
order to reduce profiling overhead.

3.2 Profiling an Application
We built a shared library that registers a callback function

with our Peruse event, captures the amount of data sent to
each remote network adapter within the callback function,
and writes the aggregated information to the OTF files [5].
Our library supports the of use environment variables to
define which collective(s) should be tracked. If no collectives
are specified, the library measures point-to-point network
traffic generated by the entire application. By preloading
our library with the MPI application using LD_PRELOAD, we
are able to generate detailed communication profiles without
modifying the application’s source code.

3.3 Visualization
A python script was written to: (a) parse the files con-

taining the list of port connections (ibdiagnet.lst) and the
unicast forwarding tables (ibdiagnet.fdbs), which are both
generated by the InfiniBand ibdiagnet command; (b) parse

117

Figure 1: Boxfish visualization of TSUBAME2.5’s
network traffic caused by the NPB FT benchmark.

the OTF profiles written by the application; and (c) build
a connected network using port connection data. Weights
are added to the network links based on information in the
profiles and tracing the traffic paths using the network’s for-
warding tables. After this point, the Boxfish visualization
data is generated.
Fig. 1 shows the profile visualization of the FT benchmark

from the NAS parallel benchmark suite (NPB) with prob-
lem size E running on 512 nodes of TSUBAME2.5. Compute
nodes are positioned horizontally at level 0 while switches
are shown at the other levels. TSUBAME2.5 uses two sub-
nets and each node has a connection to both subnets. Each
line drawn between the different levels represent a link con-
necting a switch to another switch or to a compute node.
Link colors, which indicate network traffic, are based on the
color-value map shown on the left of the figure. Red links
indicate traffic hotspots, i.e., points of possible bottlenecks.
For readability, links with no traffic are not shown.

4. OVERHEAD MEASUREMENT
We used the TSUBAME-KFC system at the Tokyo In-

stitute of Technology for our overhead measurement experi-
ments. Each of the 40 compute nodes is connected to one of
two InfiniBand FDR switches, which share a 15 link inter-
connect. Tests were carried out on 32 nodes with no other
user process running on the network. The results presented
in this section do not include the time for writing output
files, which was approximately 13ms for each test case.
An MPI_Alltoall microbenchmark was used with mes-

sage sizes in the range of 0 - 32 kB. 30 profiled trials and 30
unprofiled trials were ran for each message size, with each
trial comprising of 20,000 iterations (2 initialization runs +
19,998 timed runs). The minimum of the average runs for
each trial was used for the resulting value since this would be
the most reproducible result [2]. All timing values were mea-
sured on process 0 using a combination of MPI_Barrier()
and gettimeofday(). These results are shown in Fig. 2.

The maximum overhead for the MPI_Alltoall call is 4.08%
when the message size is 256 bytes. We attribute the vari-
ations in overhead across the different message sizes to the
changes in the protocol being used when different size thresh-
olds are reached. Most notable, messages larger than 12 bytes
and less than 256 bytes use send/receive semantics, while
smaller messages use the RDMA eager protocol. Messages

Figure 2: Chart showing the overhead when profil-
ing MPI Alltoall with various message sizes

larger than 256 bytes use the RDMA pipeline protocol.
The communication bound FT benchmark from the NAS

Parallel Benchmark (NPB) suite was also used. We also ran
30 profiled runs and 30 unprofiled runs for this benchmark
with the class C problem size. Again, we took the minimum
of the average runtime for each trial. The communication
overhead is a negligible 0.0205% of the application’s overall
runtime, i.e., an increase from 12.1849 secs to 12.1874 secs.

5. SUMMARY AND FUTURE WORK
By profiling network communication using a modified Pe-

ruse interface in Open MPI, we enabled the monitoring of
low-level network-wide events during MPI collective com-
munication. A non-intrusive profiling library and parsing
tool were developed to record and process these events, re-
spectively. We showed how the visualization of our profile
information in Boxfish allows for the identification of poten-
tial network bottlenecks within applications. Our profiling
library does not require instrumentation or recompilation of
the user application and incurs only 0.0205% overhead when
tested with the NPB FT benchmark.

Our next step is to implement this functionality using the
MPI Tools interface in Open MPI and other MPI libraries.

6. REFERENCES
[1] C. Bell, D. Bonachea, R. Nishtala, and K. Yelick.

Optimizing bandwidth limited problems using one-sided
communication and overlap. In Proc. of IPDPS, 2006.

[2] W. Gropp and E. L. Lusk. Reproducible measurements
of mpi performance characteristics. In Proc. of Euro
PVM/MPI, 1999.

[3] K. E. Isaacs, A. G. Landge, T. Gamblin, P.-T. Bremer,
V. Pascucci, and B. Hamann. Exploring Performance
Data with Boxfish. In Proc. of SC Comp., 2012.

[4] R. Keller, G. Bosilca, G. Fagg, M. Resch, and J. J.
Dongarra. Implementation and Usage of the
PERUSE-Interface in Open MPI. In Proc. of Euro
PVM/MPI, 2006.

[5] A. Knüpfer, R. Brendel, H. Brunst, H. Mix, and W. E.
Nagel. Introducing the Open Trace Format (OTF). In
Proceedings of the 6th International Conference on
Computational Science - Volume Part II, ICCS’06,
pages 526–533, 2006.

[6] A. Landge, J. Levine, A. Bhatele, K. Isaacs,
T. Gamblin, M. Schulz, S. Langer, P.-T. Bremer, and
V. Pascucci. Visualizing network traffic to understand
the performance of massively parallel simulations. IEEE
Trans. on Vis. and Computer Graphics, Dec 2012.

[7] MPI Forum. MPI:A Message-Passing Interface
Standard. http://www.mpi-forum.org/, Mar 2014.

118

